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• PREFACE

In December 1960, Space Technology Laboratories, Inc. , was awarded a

one-year contract by the fret Propulsion Laboratory for a Space Systems

Analysis Study. This contract was later extended for an additional eight

months, and this report summarizes the work accomplished between January

1961 and March 196Z. Further details may be found in the seven formal reports

and twenty-four informal memoranda listed under REFERENCES.

Generally, the work performed under the SSAS Contract has been confined

to the consideration of advanced missions not yet in the development stage, or

to generating new techniques applicable to wide classe_s of missions. This work

falls roughly into two categories: (I) Lunar trajectories and Huidange studies

and (Z) Orbit determination studies. In this Preface, the motivations behind

these studies will be explained and the scope of the studies indicated.

LUNAR TRAJECTORIES AND GUIDANCE STUDIES

At the time this study was begun, it was felt that the area of earth-to-moon

trajectories and missions had already been thoroughly and exhaustively studied

by JPL, STL and others in connection with such specific missions as ABLE-5,

RANGER, SURVEYOR, etc. By contrast, the area of lunar return was under-

stood in only a rough and sketchy way. Therefore a concentrated effort was

directed toward this problem.

First, it was necessary to be able to generate with ease moon-to-earth

trajectories satisfying specified end conditions. For this purpose, the Analytic

Lunar Return Program, which is described in Part I, was developed (see

program is "analytic" in the sense that it consists of two closed form (conic)

trajectories which are joined at the moon's sphere of influence. ' This feature

permits the "split end-point" trajectory problem to be solved rapidly and also

permits large numbers of moon-to-earth trajectories to be generated and

studied parametrically with ease.

Next, a thorough understanding of moon-to-earth trajectories was gained

by analysis and computation to establish the relationships between lunar

injection parameters, earth atmosphere rexentry parameters, trajectory
Z
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geometry, time of launch, time of flight, etc. The sensitivity of moon-to-earth

trajectories to launch errors (miss coefficient analysis) and midcourse correc-

tions was also investigated. Although this work could, in principle, have been

performed on existing computer programs (such as the STL Encke Program), a

more elaborate and efficient study was possible through use of the specialized

Lunar Return Program. As illustrated in Part I, very good agreement was

obtained between the results from this program and an "exact" (integrating)

program.

In conjunction with the trajectory analysis described above, two moon-to-

earth mission analysis studies were also performed and are discussed in

Part II. These studies covered, in addition to free flight trajectory analysis,

I) A parametric study of powered

surface (Reference[ 1]), flight from the lunar

Z) An analysis of launch guidance errors, and

3) Monte Carlo simulations of tracking and
midcourse

guidance (Reference [3_}.

The two missions considered were a "standard" lunar return, employing all the

sophistication necessary for a manned mission, and a "minimal" lunar return,

applicable, for example, to a sample return from a landed SURVEYOR space-

craft. Subsequenttothemission simulationwork reportedinReference[3]

additional work has been done on this problem, using a new noise model for

tracking observations, and a more exact error analysis has been made of the

minimal mission. Thus Part II is actually a revised version of Reference[31

and for this reason is somewhat longer and more detailed than the other parts.

The lunar return mission studies show that both of the above missions are

feasible from the point of view of guidance, using either existing equipment or

equipment which is compatible with the present state-of-the-art. For example,

for the standard mission, re-entry conditions can be controlled to an accuracy of

O'long O. 07 ° (4 n mi) , O'lat O. 2° (I0 n mi) , O'_e O. i°

3
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using two (attitude controlled) midcourse corrections. For the minimal

mission, an accuracy of

O-long = 0. 67 ° , 0"la t = 0.45 °

can be attained using two (spin stabilized) midcourse corrections. (For the

minimal mission, re-entry angle _e is not controlled by midcourse corrections

since it is not a critical parameter. } Velocity requirements for launch and for

midcourse correction were also estimated for both missions.

The same earth-moon model as used for moon-earth trajectories,

employing the moon's sphere of influence, is currently being used to study

circumlunar trajectories. This effort is discussed in Part III and in References

L._j_n_L_0J _wo_a_ categories of circumlunar trajectories are under

consideration: free-return, or true circumlunar, and non-free-return, in which

a velocity increment AV is required in the vicinity of the moon to modify the

nominal trajectory and make it return to earth.

Emphasis will be on non-free-return trajectories, of which the free-return

examples will be special cases. The motivation for studying non-free-return

trajectories is that the free-return type is a very restricted class which may

not be compatible with many mission objectives, such as having widest freedom

in choosing day, time of launch, and pericynthion altitude, and being able to

pass over a specified point on the moon's surface. Non-free-return also

includes the case of "aborting" near the moon an arbitrary lunar return

trajectory.

ORBIT DETERMINATION STUDIES

The term "orbit determination n is used here to mean the processing of

noisy, redundant spacecraft "observations" to obtain (I) an estimate of the

trajectory of the spacecraft and {2) a measure of the accuracy of the estimate,

such as the covariance matrix of the estimate. In all practical methods of

orbit determination, the problem is linearized so that the estimation procedure

is a linear operation on observational "residuals"; the various techniques

differ in the weights assigned to observations and in the resultant covariance

matrix of the estimate.

4
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Work on the statistical theory of orbit determination was conducted in two

phases and is described in Part IV (see References [5] and [6j. ) In the first

phase, the question of how to handle correlated observations was studied. When

observations are correlated, one is faced with the necessity of choosing among

several statistical estimation techniques to select the method most appropriate

for trajectory applications. This led to a comparative study of least squares

and minimum variance methods. As a result of this study, it was concluded

that the most suitable technique, both from the point of view of computational

simplicity and accuracy, was a particular form of weighted least squares esti-

mation in which the weights assigned to observations are determined not only by

the mean square value of the noise but also by the degree of correlation among

ob se rvati ons.

Having decided in phase one on the character of the estimation technique,

this technique was expanded in phase two to encompass the many special prob-

lems which arise in orbit determination: (I) the handling of a priori data,

(Z) the separation of parameters into classes, according to whether or not they

are being estimated, (3) tracking through a midcourse maneuver, and (4) modi-

fying the equations to make them more suitable for spacecraft on-board

computation.

In conjunction with, and in addition to, the above theoretical studies, a new

computer program,! the Tracking Accuracy Prediction Program - (TAPP,

Mod I) was developed, and-is discussed in Part v {seeReference[7]. ) This

program was designed not for real time tracking, but as an analytical tool for

predicting the results of real time tracking and guidance of spacecraft. Thus,

for reasons of simplicity and speed, sequences of conics about the principal

bodies in question {earth, moon, sun, planets) were used to compute trajectories

instead of the true solutions to the equations of motion. In all other respects,

however, the program simulates real time tracking operations, and the fact that

"analytic" trajectories are employed should have only a slight effect on the

results the program was designed to yield.

In common with other orbit determination or tracking programs, 'TAPP I

determines the covariance matrix of estimates of orbital parameters for various

types of observational data, data rates, tracking intervals, and observational

v5
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noise models. In addition, however, it has the following features:

{I) It determines the statistical effect_n orbit determination of
uncertainties in physical constants and tracking station
location coordinates, and of biases in various data types.

{Z) It simulates tracking "through" a midcourse correction,

assigning an appropriate statistical uncertainty to errors
in the execution of the correction.

TAPP I is thus particularly well suited to the design and analysis of

advanced space missions and can answer many questions which were previously

extremely difficult to analyze - viz., what are the effects of systematic errors,

interacting with tracking and midcourse guidance, on the final accuracy of a

space mission.

Concurrent with the completion of TAPP I, development has begun on a

more powerful version {TAPP Mod II}inwhich the basic TAPP I program is

used to drive a Monte Carlo process capable of a complete statistical tracking

and guidance analysis of missions having multiple midcourse and terminal

guidance maneuvers.

*GM of earth,

unit, etc.
sun and other planetary bodies, velocity of light,

6
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• LUNAR TRAJECTORIES AND GUIDANCE STUDIES

I. MOON-TO-EARTH TRAJECTORIES

A. Introduction

For the purpose of studying moon-to-earth missions, it is desir-

able to be able to generate moon-to-earth trajectories by choosing values

of the parameters listed below (see also Figure l-l):

a) selenographic (lunar surface) launch site
latitude S

s
b) launch site longitude

c) day of launch

d) lunar powered flight control angle from launch

to lunar burnout, and lunar powered flight time
int erval

s
e) burnout altitude

f) re-entry maneuver downrange angle, and maneu-

ver time from re-entry to touchdown

g) landing site latitude

h) landing site longitude

i) re-entry flight path angle

j) re-entry altitude S

k) total time of flight

It is important to determine (1) the lunar injection conditions and

certain auxiliary trajectory variables (such as trajectory plane inclinations)

which correspond to the above parameters, (2) the geometric constraints

which must exist between all of these variables and parameters, and (3)

the sensitivities of terminal variables on earth to the lunar injection con-

ditions. A special computing program, the Analytic Lunar Return

It should be understood that not all of these parameters maj _ be chosen

independently of the others. Asterisks denote a partial set of parameters

which can be specified independently.

-1-15
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Program (ALR)[2] , was written to facilitate the study of moon-to-earth

trajectories from this point of view. In the following sections we shall

discuss, in order, the characteristics and logical organization of this pro-

gram, and the major characteristics of moon-to-earth trajectories as

determined with the aid of the ALR program, and the accuracy of the

program.

B. The Analytic Lunar Return Program

The ALR Program has the following features:

1) It is "analytic" in that closed form solutions

(conics) to the equations of motion are used,

yielding a very high computational speed and

making it feasible to perform elaborate para-

metric studies which only an analytic program
would allow with reasonable machine time.

z) Search loops are provided to solve the "split-

end-point" problem when parameters which are

meaningful to the mission analyst are input to
the program.

3) When used with the "T-correction" (see Section D),

the program supplies quite accurate approximate

lunar burnout conditions for subsequent use with

an n-body integration program to determine "exact"

trajectories. To aid in this possibility, the lunar

ephemeris tape used in the analytic program is

the same as that used in STL integrating programs.

4) The Program may be made a part of other analytic

programs requiring highest speed, such as a Monte

Carlo guidance analysis program [3]. To facilitate

this possibility the Program contains a Sensitivity
Coefficient Routine which takes lunar burnout or

midcourse conditions, introduces incremental

changes in each variable, and determines the re-

sulting perturbations at the earth.

5) By varying the size of the burnout or midcourse

perturbations, nonlinear effects may be examined.

This ability to simulate accurately nonlinear be-

havior, together with high computational speed,

makes practical a Monte Carlo simulation of mid-

course guidance freed of the necessity for the usual

linearity as sumptionso

17
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The analytic model upon which this program is based was first

presented by V.Ao Egorov in 1956 [3Z]. In this model, earth-moon space

is divided into two regions such that only the moon's gravitational field is

effective in one region and only the earth's gravitational field is effective

in the remaining region. The dividing surface is defined as the locus of

points at which the ratio between the force with which the earth perturbs

the motion of a third body and the force of attraction of the moon is equal

to the ratio between the perturbing force of the moon and the force of

attraction of the earth° Thi§ surface is approximately a sphere whose

center is coincident with the center of the moon and whose radius is

/.m_ z15
r = 0 87 r "- 31,000 nautical miles (57,400 km),

s " mL_ j

is the mean earth-moon distance and m/M is the moon-earth

mass ratio.

The problem which the program solves is to find the unique moon-

phase and earth-phase conics which satisfy the input conditions (specified

in the Introduction) and which match in position, velocity and time at the

moon's sphere of influence. Rather than attempt to express orbital

parameters explicitly as functions of input parameters, the computing

technique used is to replace unknown parameters with "trial" values and

iteratively solve the equations of motion until input and interface conditions

are met, within prescribed tolerances. Figure l-Z illustrates the general

logic of the procedure. This technique has proved quite successful, re-

quiring 4 to 9 iterations to converge°

After the above search is completed, miss coefficients are gen-

erated using the Sensitivity Coefficient Routine° This is a separate sub-

program which employs explicit expressions and no iterations. It is

possible to use explicit equations here because the split-end-point diffi-

culties which complicate the search routine are no longer present°

The T-correction, described in Section D, is an empirical per-

turbation made at the moon's sphere of influence to compensate for the

moon's perturbing effect on the trajectory during the earth-phase of the

trajectory.

whe re r
m
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MASSLESS MOON

COMFUTE =

POSITION, VELOCITY,
TIME ..

AT MSA w
]

EXIT

NO SOLUTION

COMPUTE:

MOON PHASE CONIC;

POSITION, TIME
AT MSA

NOT l MET

TEST

POSITION VARIATION

AT MSA

; I MET

CALCULATE QUANTITIES

DESIRED IN PRINTOUT

CALCULATE

VARIATION TRAJECTORIES

USING MISS COEFR ROUTINE

1
EXIT

TEST _ _

VELOCITY VARIATION

AT MSA

COMPUTE :

EARTH PHASE CONIC;

POSITION, VELOCITY
TIME AT MSA

i  X'TINO SOLUTION

"'V" MSA-" MOON'S SPHERE OF ACTION.

-X--'X- THE SUCCESS OF THIS TEST IS REGISTERED, AND IF THE POSITION TEST IS

ALSO SATISFIED v THE PROGRAM EXITS THE SEARCH LOOP.

Figure I-2. General Logic Block Diagram
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C. Trajectory Analysis

1. Earth Phase ,

Since the moon's sphere of influence is only 31,000 nautical

miles in radius, the major part of the trajectory will be the earth-phase

conic. Apogee of this conic will be approximately the distance of the moon,

or greater, while perigee will be roughly the radius of the earth, or less.

Thus, the earth-phase conic will be a portion of a highly eccentric ellipse

(e _ 0.96), or else be parabolic or hyperbolic.

Since the trajectory consists almost entirely of the earth-

phase conic, this phase may be studied independently of the lunar launch

conditions° ,_ In performing such studies_ it was discovered that many pa-

rameters depended primarily on the total time of flight and the distance of

the moon.

During a lunar month, the earth-moon distance will vary by

about 7.5 earth radii. Thus, for fixed flight, times, vehicles launched on

those days when the moon is farthest from the earth will have higher

(earth phase) energies than those launched when the moon is closest to

the earth. This observation is born out by Figure 1-3 which plots the re-

entry velocity versus the total time of flight for different earth-moon

distances. The effect of the re:entry flight path angle on the re-entry

velocity was found to be negligible.

In a similar manner_ it is possible to show that the velocity

and flight path angle at the moon's sphere of influence will also depend on

the time of flight and the distance to the moon° These quantities, however,

will also depend upon the re-entry angle; particularly the flight path angle.

The flight path angle at the moon's sphere of influence is shown in Figure I-4b

for shallow re-entry (this angle approaches 180 degrees for steep re-entry).

The variation of the velocity at the sphere (Figure 1-4a) with the re-entry

angle, on the other hand, is significant but small. The indication that

steeper re-entry angles have lower velocities may be explained by the fact

that these trajectories re-enter on the side of the earth facing the moon,

whereas shallow re-entry trajectories come in on the back side of the earth.
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Figure i-3. Re-entry Velocity (Altitude = 400,000 feet) versus Total

Time of Flight for Various Distances to the Moon
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The steep re-entry trajectories, then, may have a distance as much as

two earth radii less to travel than shallow re-entry trajectories, and

therefore require less energy to accomplish this in the same amount of

time.

Returning to the first observation that the majority of the

lunar return trajectory will consist of the earth-phase conic, it has been

shown for a range of analytic trajectories that the declination and right

ascension of the moon at launch are within 1.5 degrees of that of the ve-

hicle at the transfer point between the earth and moon phases. The reason

for this is that just after lunar burnout, the vehicle very nearly cancels

the angular velocity of the moon causing its angular position with respect

to an inertial earth centered system to remain nearly fixed out to the

transfer point. This fact, and the observation that the in-plane angle be-

tween the transfer point and the re-entry point {angle _sr in Figure 1-5) re-

mains essentially dependent only on the time of flight and the re-entry

angle, permitsus tO plot Figure 1-6. This figure will aid in calculating

latitude restrictions on the landing site.

On the basis of these observations, it is possible to define

what may be called a "touchdown cone" as shown in Figure I-5. This cone

may be generated as follows:

a) For a given total flight time and a given

re-entry flight path angle the in-plane angle,

_sr will be fixed and may be determined

from Figure 6. With the arguments given

above, this angle will be essentially the in-

plane angle from the moon to re-entry.

b) The re-entry maneuver angle, if nonzero,

may now be added to Dsr to produce the total

in-plane angle from the moon to touchdown.

c) With this total in-plane angle fixed, it is

possible to generate all possible earth phase
conics which are launched from a certain

declination of the moon, ioeo, on a certain

day, and which have a given total flight time,

re-entry flight path angle and re-entry maneu-

ver angle. These trajectories may be generated

-9-
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by rotating the in-plane conic about the

earth-moon line producing the touchdown

cone shown in Figure l-5a. The two trajec-
tories drawn represent counterclockwise

re-entry (in the direction of earth's rota-

tion) and clockwise re-entry.

It is clear that as re-entry progresses from

shallow to steep angles, the angular radius
of the cone will increase to a maximum of

90 degrees and then decrease, on the moon
side of the earth, down to zero for a recti-

linear trajectory. The allowable declination
for this trajectory will be, as expected,
identical to the declination of the moon at

launch.

One queS'tion which can now be akked is" what restrictions

does this process place on allowable landing sites ? Certainly there will

be no restriction on the landing site longitude since any longitude may be

obtained with a given flight time by launching from the moon at the proper

time of day. There are restrictions on the allowable landing site latitudes,

however, and this is shown in Figure l'5b. As indicated on this diagram,

the landing site must be within a certain angular distance of the earth-

moon axis as measured from the center of the earth. The maximum al-

lowable latitude will be attained for the trajectory passing over the north

pole whereas the minimum latitude will be for a trajectory passing over

the south pole. These are shown in the figure for 50 and 90 hour flight

time s. Simple linear relationships may be obtained from this figure,

giving these extremes of latitude as a function of the total in-plane angle

and the declination of the moon. These are presented graphically in

Figure l-7. The:manner in which this graph may be used is first, to de-

cide what the total in-plane angle is, based on the total time of flight,

the re-entr'y flight path angle, and the re-entry maneuver angle (with the

aid of Figure I-6, and second, to determine the declination of the moon

on the day of launch. The allowable touchdown latitudes will then lie with-

in the parallelogram for the given lunar declination and total in-plane

angle.

_12-
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This graph may also be used to answer the following question:

for a given landing site latitude, total time of flight and re-entry flight path

and maneuver angles, what are the allowable declinations of the moon

(which is equivalent to days of the lunar month) for which a trajectory is

possible? This question is easily answered by determining what lunar

declination parallelograms will cause the desired touchdown latitude to lie

within them for a fixed total in-plane angle.

The following two examples are given for illustration.

a) Simple lunar sample return mission:

Total time of flight = 70 hours

Re-entry flight path angle = 175 degrees

Re-entry maneuver angle = 0 degrees

From Figure 1-6, the moon-to-entry in-plane angle will be

about I0 degrees. This will also be the moon-to-touchdown angle. If the

desired landing site latitude is Z0 degrees, then from Figure 1-7, the allow-

able declinations of the moon will be between 10 degrees to 30 degrees.

b) Apollo manned return mission:

Total time of flight = 70 hours

Re-entry flight path angle = 96 degrees

Re-entry maneuver angle = 40 degrees

From Figure 1-6, moon-to-re-entry in-plane angle will be

about 160 degrees. Adding on the maneuver angle will make the total

moon-to-touchdown angle equal to Z00 degrees. (This angle will produce

the same cone as one wh'ose angle is 360 degrees - ZOO degrees = 160

degrees). Again if the desired landing site latitude is Z0 degrees then,

from Figure I-7, the allowable declinations of the moon will lie between

0 degrees and -30 degrees. For a particular lunar period it is possible,

by use of the foregoing graphs, to plot latitude restriction curves such as

shown in Figure I-8. The time period in this case is the month of December

in 1963. For a given launch date (which implies a given declination of the

moon) and a given time of flight, the allowable re-entry latitudes shall lie

28
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between the two limiting curves. If the re-entry maneuver angle is taken

into account, similar graphs may be drawn presenting limitations on landing

latitudes.

The reduction of the number of significant variables that enter

into the calculation of the earth-phase conic also makes it possible to

graphically determine some of the angular quantities involved. For example

the declinations of the moon and landing site and the total in-plane angles

between these points will determine the orientation of the earth-phase conic.

Figures 1-9 and 1-10 present the inclination of the conic and the azimuth at

touchdown respectively for specific total in-plane angles. Graph s for a

complete range of in-plane angles have been drawn, however, only these are

presented for illustrative purposes. For the Standard Return mission

presented in Part II where the declination of the moon is -10 degrees,

Figures 1-9 and 1-10 indicate the inclination and azimuth to be about 32 and

62 degrees, respectively_ /

2. Moon Phase

The earth-phase analysis has been based primarily on the

fact that many independent parameters at the moon have little affect on

the earth-phase conic. To a certain extent, the reverse is also true.

Bevore presenting some of the quantitative results generated by the Ana-

lytic Program, it is possible to deduce some qualitative properties of the

moon-phase by visualizing the class of all earth-phase trajectories for a

given flight time and a given re-entry angle. As deduced in the earth-

phase analysis, this may be done without involving the shape or orientation

of the moon-phase conic. Figure 1-11 shows such a class of trajectories.

In this figure, no positions will be designated on the sphere of influence.

Instead, only the velocity vector at the sphere, Vs, projected from the

center of the moon, will be drawn. As will be seen later, the directions

of these velocity vectors will represent very nearly the direction of the

hyperbolic asymptote of the moon-phase conic_

30
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Continuing with Figure i- 1 la, the earth-phaseconic has been

drawn with respect to inertial space where_ and_ are the velocities of
s rn

the vehicle and the moon respectively at the sphere relative to the earth.

For a fixed day of launch, flight time, and re-entry flight path and maneu-

ver angles, it is possible to drawthe re-entry cone indicated. Shown on

this figure are trajectories which approach the earth in extreme clockwise

and counterclockwise manners and over the north and south poles. All

other trajectories will form a surface passing through these four. If as

assumed above, the time of flight and the re-entry flight path angle are

fixed then, as shown in the earth-phase analysis, the velocity magnitude

u and the flight path angle _s will be constant. Also, since the vector_s rn

is fixed and the velocity

=_ +q
s S rn

the class of earth-phase velocity vectors may be drawn as radii of a sphere

whose radius is u s and whose center is located at the tip of the ffm vector.

This is called the spherical boundary in Figure I-llb where the velocity

vector additions for extreme clockwise and counterclockwise re-entry

are shown.

On visualizing the class of all possible vector additions, it is

seen that the extreme clockwise re-entry will generate the maximum pos-

sible moon-phase velocity_ and the extreme counterclockwise re-entry
s

will generate the minimum possible velocity_ . Thus, it has been shown
S

that although the energy of the vehicle for various trajectories may be

identical in the earth-phase, the energy in the moon-phase will differ.

Analysis of extreme clockwise and counterclockwise re-entry trajectories

computed by the analytic program indicates that the difference may be con-

siderable. An attempt was made to find the bounds on the energy and this

is shown in Figure l- 12. Here the lunar burnout velocity has been plotted

against the total time of flight for various distances to the moon. To ob-

tain extreme trajectories a re-entry flight path angle of 96 degrees was

chosen for all cases.
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By means of the vis-viva integral, it is possible to convert

these velocities to equivalent velocities v at the sphere of action. The
s

results are shown in Figure 1-11. Alsoplottedhere are the hyperbolic ex-

cess velocities, and these are within 100 to 300 fps of the velocities v .
s

It can be shown that the direction of the hyperbolic asymptote is within

0.1 degree (order of magnitude) of the direction of
S

Under the basic assumptions concerning the gravitational

model, the moon-phase conic may be considered as stationary in inertial

space (for an observer on the moon) from the moment that it leaves its

surface. Therefore, although the moon will rotate in this system, the

direction of the velocity vector -9 s may be found with respect to the surface

of the moon at launch. This angle, measured from the earth-moon line,

is presented in Figure 1-14. Itis called earth-moon-probe angle (EMP) and

will depend upon the same set of parameters on which the magnitude of
s

depends. Again the data was taken from analytic runs representing ex-

treme re-entry conditions at the earth (_ = 96 °) and for various distances
r

to the moon. It is seen from this graph that this angle varies considerably

in going from counterclockwise to clockwise re-entry. Also, as expected

from the velocity vector diagram shown in Figure 1' 1 lb, the angle EMP is

greater for clockwise re-entry than for counterclockwise re-entry. For

example, for a 60 hour total flight time and a mean distance to the moon

the angle will vary between 40 degrees (ccw re-entry) and 49 degrees

(cw re-entry).

It is well known that except for librations which amount to

about 7.5 degrees in the east-west direction and about 6o 5 degrees in the

north-south direction, the face of the moon directed towards the earth

remains relatively fixed. The classical selenographic coordinates set up

on the moon are such that the surface's "mean" position on the earth-moon

line represents zero latitude and longitude. Also, the moon's axis of ro-

tation lies very nearly perpendicular to its plane of motion around the

earth. Thus, its equatorial plane will nearly contain the moon's velocity

vector_ . This implies that the vector_ will be: very close to the
m s

selenographic equator and in fact upon observing the results of many
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analytic runs, it does consistently come within 10 degrees of the moon's

equator. Since this angle is of the same order of magnitude as the libra-

tions of the moon, and since the librations will be ignored in the qualitative

discussion that follows, it will be assumed that the vector v does in fact
s

lie in the moon's equator.

We shall consider now a graphical method which may be used

to solve approximately for some of the remaining parameters used in the

moon phase geometry. This approach has the dual purpose of providing a

method for the practical determination of some of the important moon-to-

earth parameters while at the same time indicating the parametric rela-

tionships involved in the moon phase. The data used in generating these

graphs have been obtained in some cases from the analytic program and

in others from solutions of simple spherical triangles.

a) First, it is assumed that all the parameters required to

solve the earth phase have been decided upon and that the analysis has

progressed to the point where the magnitude and direction of the v s vector

have beeni with the EMP angle representing the direction of this vector

relative to the selenographic coordinate system.

b) Then, referring to Figure l- 15,specifying the selenographic

latitude and longitude (i_o and k respectively) will determine the orienta-o

tion of the moon phase conic since it must pass through the v vector and
s

the launch site vector. The right spherical triangle shown in this figure

with the sides _o and (k - EMP) may then be solved for the inclinationo

of the moon phase trajectory, the launch azimuth and the in-plane angle

from launch to the v vector. The inclination is given in Figure l'16versus
S

the longitude minus the EMP angle for various launch site latitudes.

c) The launch azimuth may be found from Figure 1'- 17 _vhich

is also plotted versus the longitude minus the EMP angle and for various

launch site latitudes.

*It should be noted that these simplifying assumptions are not made in

the Analytic Lunar Return Program, but were only made in the quali-

tative graphical analysis discussed here and illustrated in Figures 1-16
to I-.Z0.

Remember that longitudes measured west of (0, 0) are negative.

-Z5-

89



I

LAUNCH _Pt

I SITE ,_FZ,_

I

I

I
I
I

I
I

I

%

EARTH

Figure 1-15. Moon Phase Geometry

d) The in-plane angle from the launch site to the vector
s

(which also indicates the direction of the hyperbolic asymptote) is com-

posed of the sum of the powered flight angle and the in-plane burnout to

asymptote angle; indicated by _pf + _bs + _s in Figure 1-15; This angle is

presented in Figure I- 18 and also plotted versus the longitude minus the

EMP angle for various launch site latitudes.

e) The partial in-plane angle-_bs + -_s may now be used to

solve for the burnout flight path angle _b" The moon phase conic will be

completely determined if the burnout parameters of altitude, velocity and

flight path angle are specified. Then it is possible to solve for the angle

I _l--bs +-_s given R , the radius of the sphere of influence. These param-S

eters have been plotted in Figure 1-19, for a fixed burnout altitude of lOOs 000

I
I
I

I
I

I

feet and may be used to solve for "_b"

To illustrate this procedure, consider the following example:

Total time of flight = 90 hours

1010Distance of the moon at launch _-- 1.3B x feet (max)

Type of re-entry = counterclockwise

Launch site latitude = 5 degrees

Launch site longitude = 25 degrees

Burnout altitude = 100,000 feet

Powered flight angle = B degrees
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With the information and the foregoing graphs, the following information

may be obtained°

Lunar burnout velocity _ 8250 fps (Figure 1-lZ)

Velocity at the sphere of action ----_ 3200 fps (Figure 1-13)

Hyperbolic excess velocity _--- 2900 fps (Figure 1-13)

Earth-moon-probe (EMP) angle -_ 61 degrees (Figure 1-14)

Longitude - EI_P angle = 25 - 61 = -36 degrees

Trajectory inclination = 9 degrees (Figure I' 16)

Launch azimuth = 95 degrees (Figure I_!7)

Launch site - asymptote in-plane angle = 37 degrees (Figure I-18)

Burnout - asymptote in-plane angle = 37 - 3 = 34 degrees

Burnout flight path angle = 23 degrees (Figure I-19)

Since it was necessary to specify the day of the month on which the vehicle

was launched (except that it must be on a day when the distances to the

moon specified above is satisfied) the determination of the moon-phase by

this method is independent of the declination of the moon. It has already

been made clear that the moon-phase is essentially independent of the

terminal conditions at the earth (except for cw or ccw re-entry).

Aside from using these graphs to obtain approximate values

of moon-phase parameters in specific situations, it is possible to generate

restriction curves as has been done in the earth-phase analysis. Return-

ing to Figure 1-15, for example, itis clear that the in-plane angle _b s s

is dependent only on the velocity magnitude v and the burnout flight path
s

angle-_b ° Thus_ for a given day of launch and time of flight, and for

specific earth phase conditions_ the selenographic position and velocity

Of Ts will remain essentially fixed° The in-plane angle _--bs+ -_b will then

be only a function of _b o In this situation it is possible to draw constant

-_b contour curves on the surface of the moon as shown in Figure 1-20 where

each point on a given contour is displaced by the corresponding %s +-_s

angle from the v vector.
s

Such contours have been generated with the analytic program

by running trajectories with different launch sites but having all remaining

input parameters equivalent. The results of these runs are presented in

-31-
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Figure 1-21 which plots, by interpolation, the constant -_b(_--_) and constant

azimuth curves. These curves are not everywhere orthogonal. The re-

stricted region shown here and in Figure 1-20 simply implies that it is im-

possible to launch a direct ascent moon-to-earth flight from these sites,

for the earth-phase parameters considered, without first passing through

the pericynthion of the moon-phase conic.

3. Sensitivity Coefficient Analysis

The Sensitivity Coefficient Routine provides a method of com-

puting quite accurate sensitivity coefficients at a very rapid rate {0. 1 sec

per perturbed trajectory} and therefore makes it possible to generate ex-

tensive burnout or midcourse sensitivity data. This data may then be

used to show the dependence of sensitivity coefficients on launch site location,

energy, time of flight, etc. , and the results may be examined for general

trends. However, the most meangingful results will be obtained when a

specific launch guidance system {i. e. , set of burnout errors} is considered,

since it is the resultant errors at re-entry or, ultimately, the resulting

midcourse correction requirements which are significant, rather than either

the burnout errors produced by the guidance system or the sensitivity

coefficients. {See Part II).

Figures 1-22, 1-23 and 1-24 are presented to indicate the kind

of data that may be generated. Here, the variations in re-entry latitude,

longitude, flight path angle and time are found with respect to the lunar

burnout velocity, flight path angle and azimuth. An analysis of these graphs,

and others, may be found in [5].

D. Program Accuracy

I. Preliminary Study

The usefulness of any analytic model depends directly upon

the accuracy with which it yields the true conditions which are being sim-

ulated. For this reason, it was necessary to carefully analyze a broad

range of results obtained from the model and compare them with exact

results. In addition, through study of the behavior of the deviations of the

approximate from the true results, it was possible to find a method by which
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the basic model may be made to yield greater accuracy. This section

presents first, a comparison of the results from the original model to

those from the exact model; second, the arguments which led to an

empirical correction scheme; and finally, a comparison of the true re-

sults with those from the corrected model.

The preliminary results obtained from the original model

are shown in Table 1. The "exact program" mentioned here solves for

the exact trajectory (which includes earth, sun, moon, vehicle and oblate-

ness perturbations) as a function of time by numerically integrating the

second order differential equations of motion using Encke's method.

Several trends may be noted. First, faster flight times result in greater

overall accuracy. This may be expected since the size of the perturba-

tions on the trajectory will be directly proportional to the duration of

time in which they act. The second noticable trend is that the greater

the re-entry angle (steeper) the more accurate the results. This, of

course, is due to the nonlinear effect of the trajectories intersecting the

spherical earth, it is expected that the same perturbation acting on a

trajectory having a shallow re-entry as acting on one having a steep re-

entry may cause the former to miss _the earth completely while indicating

fair accuracy for the latter. Also, if one looks carefully at the impact

longitudes obtained from the exact program, he will notice that in all

cases the actual re-entry point is east of the desired re-entry point. A

later examination into the nature of the lunar perturbation will explain

why this is so. Next, although not enough cases are presented in Table 1

to indicate this, the accuracy is dependent on the lunar date of launch and,

in particular, on the distance of the moon from earth. Finally, the one

parameter which indicates best results for the cases shown in Table 1 is

the total flight time.

To improve the accuracy of the basic model, it was first

necessary to determine the specific source and size of the perturbations

not accounted for in the analytic model and then attempt a correction.

The procedure followed in doing this was to run sample trajectories on

the n-body program with and without the sun and oblateness, and with

I
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and without the moon and earth when the vehicle was in the opposing phase.

In this manner, it was found that the major part of the perturbations is

due to the earth-moon system itself, and, in particular, to the effect of

the moon on the earth-phase trajectory°

2° Correction Scheme

After considering several alternatives, it was decided that

the best approach would be to correct empirically for the bias type error

that existed in all of the runs made with the analytic program. The nature

of this bias may be seen more clearly with the aid of Figurel-Z5a. As indi-

cated above, the principal perturbation is that due to the moon on the earth-

phase trajectory; but, as shown in the figure; the moon at this time has

rotated in its orbit and will always lie to the east of the trajectory (as seen

from the earth) o The bias, then, is simply due to the moon pulling the tra-

jectory eastward° A simple method of correcting this is shown in Figure 1-25b.

The earth-phase velocity is first projected into the earth-moon orbit plane

and this projection rotated through the empirical angle T. Thus, only that

component oft which lies in (or parallel to) the moon's orbit plane is ro-
s

tated° (See Figure l-Z5b). This rotation to counteract the undirectional

bias will always be counterclockwise° The justification for this correction

is the fact that the perturbational effects on the earth-phase trajectory will

be primarily in the earth-moon plane and_ more strongly; the fact that the

correction does yield satisfactory results°

3° Evaluation of Tau

I

I

I
l

l
I
I

Investigations were next carried out to determine, first, the

trajectory parameters on which the correction angle T depends and second,

an empirical expression which approximates this dependence. The pro-

cedure used in carrying out these investigations was first to allow T to

be an independent input into the analytic program. The lunar burnout

conditions which the program calculated for various values of T were

then fed into the exact program and the results tabulated° Those trajec-

tories whose re-entry conditions_ as obtained from the exact program,

most closely correspond to the desired entry conditions were considered

to have used the optimum correction angle. This study led to the con-

clusion that T- was a function primarily .of flight time and the earth-moon

distance°
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The expression for optimum v with respect to the time of

flight was then determined for the average earth-moon distance. The

results are shown graphica/1¥ in Figure 26a. Also shown in this graph

is the variation of V with the time of flight for clockwise re-entry. The

results in this case were sufficiently different as to warrant a separate

study. Following the study for clockwise and counterclockwise re-entry,

it was found that _oth sets of empirical data could be easily approximated

by quadratic expressions.

Next, effects on T of the distance to the moon was studied

for trajectories having a total flight time of 90 hours. The results in

this case,_ showninFigurel_26b, indicates alinear dependence of T on the

earth-moon distance. Again separate studies were required for clockwise

and counterclockwise re-entry. The product of the quadratic and linear

expre s sions re sulted in the following expre ssions for the evaluation of

optimum v:

For counterclockwis_ re-entry and time of flight greater

than 45 hours,

v (5. 5246 3. 6052 x 10 -9
-- _ Xm)

.881 - 0.69055 x 10 -2 Tmi+ 1.2639 x 10 -6 mi

35 hours,

For clockwise re-entry and time of flight greater than

v (4. 7957 3. 0245 x 10 -9
= - Xm)

G.1834 - 0. 28483 x I0 -2 Tml. + 0. 69247 x 10 -6 Tmi

where x
m

minute s.

the se.

= distance to the moon in feet, and T -. = time of flight in

The value of T is taken as zero for flight times shorter than
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40 Final Accuracy

Incorporating the expressions for v developed in the last

paragraph into the analytic program yields the results shown in Table 2

for a few sample cases. As expected, the results compare most favor-

ably with the exact integration program when the time of flight is the

shortest and when the re-entry angle is the steepest and compare the i

least favorably for long flight times and shallow re-entry. The adjust-

ment required in the burnout conditions of the analytic program to pro-

duce the desired conditions on an "exact" program will be of the order of

a few tenths of a degree in _ and A or a few fps in velocity. This adjust-

ment may be made by incorporating a linear search routine in the exact

program.

The final comparison of results that may be made with the

exact program are the sensitivity coefficients obtainable from the Sensi-

tivity Coefficient Routine. Table 3 presents these results for two cases;

50 and 90 hour times of flight. The results were obtained from the exact

program in exactly the same manner as from the analytic program; i.e.,

each burnout parameter was varied independently by the increment shown

and the trajectory was then integrated to re-entry. The differences be-

tween the resulting terminal values and the unperturbed nominal values

are those shown in the tables.
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Table 1-3. Sensitivity Coefficient Comparison Between the

Analytic and Exact Programs

T e rminal

Parameters

Re-entry Time

Latitude

Longitude

Re-entry Angle

Total Time of Flight = 50 Hours

Re-entry Flight Path Angle = 163 Degrees
Increment s _

Ar Ak _ Av A_ Z_A
(50,000 ft) (1 deg) (1 deg) (50 fps) (1 deg) (1 deg)

-21._ 19.9 -0.065 -35.2 28.0 0. II

(-21.3)** (20.5) (-0.300) (-35.1) (28.8) (0.30)

-0. 051 3.33 1.41 0. 389 2.69 -15.21

(0.003) (3.20) (1.24) (0.451) (2.52) (-15.1)

4.7Z -20.2 0.692 4.93 -Z8.1 -3.52

(4.50) (-19.9) (0.735) (4.56) (-27.8) -3.25

0.291 5.81 -0.49 1.75 8.03 1.59

(0.386) (5.70) (-0.56) (1.89) (7.90) (1.50)

T e rminal

Par arnet e r s

Re-entry Time

Latitude

Longitude

Re-entry Angle

Total Time of Flight = 90 Hours

Re-entry Flight Path Angle = 169 Degrees
Inc r ement s

Ar Ak A_ Av A_ AA
(50,000 ft) (1 deg) (1 deg) (50 fps) (1 deg) (1 deg)

-48.4 68.4 -3.6 71.0 I00.2 -6.67

(-44.5) (71.9) (-4.3) (-65.0) (I03.9) (06.0)

I. 24 I. 13 7.98 I. 34 - I. 00 -7.05

(1.17) (1.00) (7.86) (1.22) (-1.13) (-7.16)

-1.72 -Z0.8 3.29 -4.67 -30.8 -0.55

(-2.79) (-21.I) (3.17) ('6.50) (-30.8) (0.68)

3.82 1.05 -3.14 4.18 2.43 1.58

(3.95) (0.90) (-2.96) (4.30) (2.13) (1.50)

The values in the tables represent actual variations in the terminal

parameters and have not been divided by the indicated increments.

**Quantities in parentheses are from the Exact Program.
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II. LUNAR RETURN MISSION ANALYSIS

A. Introduction and Summary of Conclusions

This section examines the trajectory and guidance problems involved

in returning a spacecraft from the lunar surface to earth• Two generalized

missions are considered in order to display the guidance requirements,

tradeoffs, and problem areas in two extreme cases of current interest:

a) The return of a spacecraft having all sophistication

necessary to achieve manned re-entry conditions
(the standard mission),

b) A minimal, sample return mission using a small
(,_250 lb spin-stabilized slant-launched vehicle

with or without midcourse correction (the minimal
mission).

In both missions, midcourse guidance is assumed to be under earth-based

control; however, the method of analysis and many of the results for the

standard mission apply equally well when the midcourse guidance is under

spacecraft control.

Sections B and C discuss the power flight, injection guidance, transit

trajectory, midcourse velocity (fuel) requirement, and final re-entry errors

for the two missions. For the standard mission, an autopilot-accelerometer

cutoff launch guidance system and a present state-of-the-art inertial guidance

system are compared on the basis of re-entry dispersion and midcourse fuel

requirement. The relative contributions of the launch guidance errors, track-

ing errors, and midcourse execution errors are shown. Matrices are included

relating each independent launch source error directly to re-entry errors so

that the effect of changes in the assumed source errors may be easily seen.

For the minimal mission, a comparison is made of accelerometer cutoff and

fuel depletion launches and of the re-entry dispersions with and without a mid-

course guidance system. Section D illustrates the tracking accuracy attainable

from DSIF range rate and angular data for moon-to-earth missions.

For the particular magnitudes of error sources employed in Sections

B and C, the following conclusions may be drawn from the study results.
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1. Standard Mission

a} Both the autopilot and inertial systems simulated provide

accuracy for manned re-entry when used with two midcourse corrections.

Typical final re-entry dispersions are (inertial launch guidance, 90 hour

flight):

--- =.

¢Lat = 0.07 ° (4 n mi), CLong 0.2 ° (10 n mi), ere-entry angle 0.1 °

(For comparison, a typical manned capsule with an L/D = 0.5 should allow

reaching a landing site anywhere within a re-entry footprint 800 nautical

miles in width and extending from a point 1500 nautical miles from the sub-

re-entry point to a point 3500 nautical miles from re-entry. A re-entry flight

path angle spread of 3 degrees can be tolerated, full corridor width. )

b) Compared with an allowable 3 degree re-entry angle corridor

width (+1.5 degrees}:

1) Neither guidance system will suffice uncorrected,

2) Both systems are very accurate after two correc-

tions [-_ 0.1° (1_)]

c) The uncorrected miss at re-entry for the inertially guided

flight is almost completely caused by launch site uncertainty and initial refer-

ence direction errors. These sources(whose assumed dispersions were: lunar

latitude of site 0.05 ° (l_), lunar longitude of site 0.05 ° (10-), altitude 1000 ft (lg),

azimuth direction 0.25 ° (10-))alone produce re-entry errors on a 50-hour flight of:

CLong = 12"4°' CLat = 1"37°' Grre-entry angle = 5"8° "

d) Tracking based on DSIF range rate and angular data alone

(orR = 0.5 fps, CA = cE = 0.2 °) using a data rate of one observation set per

minute is sufficient to allow the final re-entry accuracy quoted in a) above.

e) ]Employing two midcourse corrections, degradations of a

factor of 10 in velocity execution accuracy or a factor of 5 in angular orienta-

tion accuracy over values typical of present day inertial platform accuracies

cause changes of less than 35 percent in re-entry accuracy.
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f) The autopilot-controlled flights studied required 2 to 5 times

as large a midcourse velocity increment as comparable inertially guided flights.

The total midcourse velocity increments required (68 percent probability level)

for the two systems and for two flight times are:

50 hr Inertially Guided

50 hr Autopilot

38 fps 90 hr Inertially Guided 25 fps

77 fps 90 hr Autopilot IZ3 fps

2. Minimal Mission

a) Return trajectories originating near the landing region of a

66-hour earth-to-moon flight were studied as a function of flight time and re-

entry angle. The smallest uncorrected dispersion was obtained for a fast

(50 hr) trajectory having a steep re-entry angle (80 degrees to the horizontal).

The uncorrected re-entry 40 percent error ellipse for this trajectory, with

powered flight terminated by fuel depletion, has the parameters:

semi-major axis 7.95 °, semi-minor axis B. 86 °

b) The use of an accelerometer cutoff system is only weakly

effective in reducing re-entry misses because of the dominant re-entry

errors produced by the initial pointing and spin-up errors in elevation and

azimuth (assumed 0.25 ° 1_).

c) The use of two spin-stabilized midcourse corrections of

modest execution accuracy and a very simple correction logic is highly

effective in reducing the re-entry miss. For atypical 90-hour trajectory

(having a larger uncorrected miss than the 50-hour trajectory just discussed)

the dispersion in re-entry after correction is

aLong = 0.67 ° , CLat = 0"450

The standard deviations of the two velocity corrections for this trajectory are

= 179 fps, or = Z07 fps (correlation coeff = 0.997).
v I v2

-49-

62



I
II

I

i
:!

II

II
I

i
II

II
II
II

I
I

II
I

I
I

d) Tracking based on DSIF range rate and angular data alone

(0"R = 0.5 fps, _A = _E = 0.2o), using a data rate of one set per I0 minutes,

is sufficient to allow the above re-entry accuracy.

B. The Standard Mission

1. Mission Description

The mission discussed here will be termed "standard" in the

sense that the payload weight is assumed to be large enough to permit any

guidance and control equipment to be utilized which is necessary or desirable

to insure re-entry conditions suitable for manned flight.

In particular, the mission is characterized by the following

feature s:

a)

b)

The lunar powered flight will be performed under either
autopilot control or control of an inertial guidance system.

The spacecraft is fully attitude controllable at all times.

Midcourse corrections may be made in arbitrary direc-
tions under attitude controlled conditions.

c) The re-entry flight path angle will be held to 96 degrees
{i. e., 6 degree re-entry angle with the horizontal) with

close tolerances compatible with manned re-entry con-
ditions employing a re-entry L/D as small as 0.5.

Figure 2-1 shows a schematic diagram of the mission. The

powered flight consists typically of a vertical launch, a kickover in the

pitch plane if required by final flight path angle, and a constant pitch rate

profile, all under control of an autopilot or inertial guidance system. The

free flight trajectory is tracked by the DSIF, using range rate, elevation,

and azimuth data. A midcourse correction is performed by radio command,

based on the results of tracking. This maneuver is designed to correct three

components of miss at re-entry -- longitude, latitude, and flight path angle.

A second midcourse correction, based on additional tracking data, is made

24 to 48 hours later as a vernier on the first. In the following sections,

these phases will be discussed in detail.



i
II
II

I
I

I

i

I
I
I
I

I
I

I
I

I
I

I
I

_ Powered Flight

l __ DSIF

t z

Re -entry

Figure 2-1. Schematic Diagram of the Standard Mission.

Z. Transit Trajectory

The return trajectory may be specified by choosing desired values

of the following variables:

Selenographic latitude of lunar launch site

Selenographic longitude of launch site

Return flight time

Re-entry latitude

Re-entry longitude

Re-entry angle

Launch date (time of lunar month)

Earth approach direction (i.e., clockwise, or
co unte r c lockwis e ).

From these variables the required injection conditions at the end

of the lunar powered flight may be computed. Using the Analytic Lunar Return

Program described in Part I, approximate lunar injection conditions were

computed for a number of trajectories having different launch site locations

and flight times. These conditions were then adjusted slightly to yield the

desired re-entry conditions using an integrating (Encke) program. The

guidance requirements for two of the trajectories were considered in detail.

Table Z-1 lists the nominal injection and re-entry conditions for

trajectories P-3 and P-4. Launch occurs on December 17, 1963 (lunar decli-

nation ,_'-23 degrees) from a point near the earth-moon line at approximately

51-
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7°W, 5°N. After a flight time of 50 or 90 hours, re-entry occurs at approxi-

mately 30°N latitude with a re-entry angle of 6 degrees with the horizontal at

an altitude of 400,000 feet. Figures Z-Z and Z-3 show the P-4 transit trajectory

projected on the equatorial plane and on a plane perpendicular to the equator.

Table 2-1. Injection and Re-entry Conditions for Trajectories P-3 and P-4

I

I
I
I

I
l
I

Injection

Liftoff time (min after Oh GMT) 180.53 705.32

Selenocentric radius, r (ft) 5,733,000 5,733,000
o

Selenographic latitude, _o(deg) 5.14 5.87

Selenographic longitude, X o(deg) -6.98 -7.05

Inertial Velocity (moon frame), Vo(fPs ) 9546.5 8270, 3

Flight path angle (from lunar vertical), _o(deg) Z4. 68 45. Z1

Selenographic azimuth of Vo, Ao(deg ) 88.69 79.43

Re -entry

Flight time, tf(hr)

Latitude of re-entry point, lati(deg )

Longitude of re-entry point, longi(deg )

Re-entry flight path angle, Bi(deg )

50. Z3 90.45_

29.98 29.58

-99.27 -99. Z6

95.83 96.00

I

I
I
I

I
I

I

3. Powered Flight and Injection Guidance

The powered flight sequence consists of the following steps:

a) A set of reference directions in space is established on

radio command (or crew control) through one or more

astronomical sightinga and an accelerometer or pendulum

determination of the vertical. In the case of the inertial

launch guidance system, these measurements establish

the inertial platform reference.

b) Guidance constants or autopilot settings are transmitted

from earth to the spacecraft computer.
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Figure Z-Z. Trajectory P-4. Equatorial Plane View
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c} On earth command (or crew command} liftoff occurs.

A launch window may be mechanized by varying the
burnout conditions as a function of liftoff time, as with
direct-ascent space launches from earth.

d} Following a 5-second vertical rise, and kickover if
required by the final flight path angle, the spacecraft
follows a constant pitch rate turn to main engine
burnout.

e} Main engine burnout is followed by a liquid propellant
vernier phase terminated by accelerometer command.

The launch vehicle was assumed to be a single stage vehicle with

a specific impulse of 300 seconds. This I is representative of solid propel-
sp

lants which will be available in the near future or of a storable liquid propellant.

A liftoff thrust-to-earth weight ratio of 4 was chosen. This value is sufficiently

large to avoid excessive gravity losses, while not imposing a maximum accel-

eration of more than ll earth g's. The constant pitch rate profile provides

flexibility in being able to attain any burnout flight path angle required by the

transit trajectory, including a launch into a lunar parking orbit. Lunar

[1 'powered flight information is given in Reference 6 for other Isp s, thrust-to-

weight ratios, and pitch profiles. Figure 2-4 shows the time history of the

principal powered flight variables for P-4. Pitch rates of 1.045 deg/sec

{P-3} and 2. 018 deg/sec (P-4} were used to produce the proper flight path

angle at thrust termination. _As in earth-to-moon flights, the energy at

injection is critical rather than particular values of velocity and altitude.

Thus, in simulating the powered flight profiles for P-3 and P-4, cutoff was

chosen to produce an injection energy equivalent to the r and V values
O O

given in Table 2-1. The resulting lunar injection altitudes were 183,800 feet

for P-3 and 145,500 feet for P-4.

The injection errors at the end of powered flight are composed

of errors produced during guidance plus errors due to the uncertainty in the

knowledge of the absolute location of the launch site and in establishing the

initial iaunch reference directions. These latter errors were assumed to be:

_Lat = _Long = 0.05 deg, _Altitude = 1000 ft

_plane of trajectory {launch azimuth error} = 0.25 deg
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A covariance matrix of injection errors resulting from the above sources and

from a complete simulation of the autopilot or inertial guidance system was

obtained for each trajectory using the methods outlined in Reference [6]

We shall discuss the error analysis of the two launch guidance methods in turn.

a. Autopilot Control

The following error sources were considered for the powered

flight under autopiiot control with integrating axial accelerometer cutoff in addi-

tion to the launch site and reference errors:

Liftoff weight, W
0

Thrust, T

Specific Impulse, I
sp

Pitch rate,

Accele rometer scale

Accele rometer bias

(percent)

(percent)

(pe rcent)

(deg/sec)

(percent)

(earth g's)

Table 2-Z presents the following error analysis information

for trajectories P-3 and P©4 under autopilot control:

l) Assumed values of the standard deviation of all

independent error sources.

z) The standard deviation in re-entry latitude, longitude,

and angle resulting from each of these independent

source errors acting separately (i.e., source to re-

entry '_miss coefficients" scaled by a 1_ source error).

3) Variances and covariances of re-entry variables

resulting from each source.

4) The re-entry variances and covariances for the

total launch system. Since the source errors

are independent, the total variances (and co-

variances) are simply the sums of the variances

(and covariances) contributed by each source.
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The information is grouped in the table as shown schematica_ly:

Source Scaled source to Re-entry

standard re-entry mis s variance s and covariance s

deviations coefficients due to each source

/
Sources

Total re-entry variances
and covariances

From this table the relative contribution of each error source to the final

miss at re-entry can be seen. In addition the effect of a change in the

magnitude of any source error can be readily estimated by scaling the vari-

ances and covariances due to the source by the square of the new source

standard deviation. Table Z-3 lists the miss coefficients relating injection

errors to re-entry errors for P-3 and P-4, used in producing Table 2-2.

b. Ine rtial Guidance

The inertial guidance errors were computed in the following

way. Open loop powered flight profiles for trajectories P-3 and P-4 were

entered into an STL inertial guidance error analysis program. From the

profiles, the contributions to the injection covariance matrix of 45 independent

error sources were computed. The resulting injection covariance matrix for

the complete system was then combined with the contributions of the launch

site and reference direction error and the miss coefficients of Table 2-3

(using the method described in Reference [1] )to produce a re-entry covari-

ance matrix. The magnitudes of the source errors used are typical of a present

state-of-the-art inertial guidance system. The final re-entry covariance matrices

for P-3 and P-4 under inertial guidance are shown in Table 2-4.
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Table 2-3. Injection Miss Coefficients

__a rij e ct ion

ation

R_-entry _
Variation

Ak
Z_ro o A _o

(ft) (deg) (deg)

I

I

I
I

Trajectory P-3 (50 hr)

A_i(deg) 0. Z7Z(10 -3)

ALongi(deg) -0. 462(10 -3)

-3
A Lati(deg) 0. 081(10 )

80.5

zxV A_
O O

(fps) (deg)

AA
O

(deg)

-26.5 0.60 104 17.1

-175.0 55. 1 -I. I0 -ZZ6 -35.7

24.4 -4.0 0.18 31 2.7

I
I

I
I

I
I

Atf(m in) -0. 447( 10 -3)

Abz(106 ft)$ -38.0(10 -6 )

Ab3(106 ft)_' 6.9(10 -6)

_24.7 17.2 -0.84 -32 -I0.7

-IZ.4 Z.33 -0.086 -15.9 -1.58

-0.35 6.29 0.012 -0.70 -3.81

Trajectory P-4 (90 hr)

A_i(deg) 0. 575(10 =3 ) 24.2 -4.69 0. 960 39.3 23.3

ALongi(deg) -0.131(I0 -2) =50.5 II.I -Z.18 -82.0 -51.9

ALati(deg) 0. 642(10 -3 ) 13.9 -5.03 I. 04 22.8 19. Z

I

I

Atf(min)

Ab2(l 06 ft)

Ab3(106 ft)

-0. 192(10 -2 ) 44.2 19.6 -2.91 68.0 -28.2

-137(10 -6 ) -2.75 0.374 -0.221 -4.45 -2.24

-8.03(10 -6 ) -0. 691 I. 66 -0. 014 -I. 29 -4.52

I

I

_b z and b 3 are components of geocentric impact parameter.
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C. Conclusions

From Tables Z-2 and Z-4 the following conclusions may be

l) For the error source magnitudes used, the final inertial
guidance re-entry errors are much too large for manned

re-entry without a midcourse correction.

z} In turn, the autopilot re-entry errors are from-- 1.7

times (90 hours} to _-,6 times as large as the IG re-entry
errors.

3) For the autopilot cases,

at 50 hr by far the largest re-entry error contributions

are thrust, T, and liftoff weight, W o' errors.

at 90 hr the major contributors are errors in A , T,
• O

and W with the T and W error terms having much
less e_fect than at 50 hr hight time.

4) The launch site and reference error sources _ , k , A o,O O
r are common to both autopilot and IG cases. Thus even
i_°the inertial guidance system performed with no error,

these sources would limit the final accuracy to th--e follow-

ing, unless improved:

_Long = 90' _Lat = 1.36 ° , _ = 5.7 ° , (50 hr)

Table 2-4. Uncorrected Miss Covariance Matrices

P3 - Powered Flight Inertially Guided

I

I
I
I
I

I

Re -entry Long

Re-entry Lat

Re-entry Angle

Re - e nt ry

Long (deg} 2

12.40} 2

ymmetric

Re -entry

Lat (deg) Z

-16. 1993

(1.37) 2

14 - Powe red Flight Inertially Guided

Re-entry Long

Re-entry Lat

Re-entry Angle

2
(13.41)

Symmetric

-66.12.85

(4.94) 2

Re -entry

Angle (deg) z

-71.4795_

7.5ooz I

(5.76) 2 J

-9Z. 7996

34. 3354

(6.95)z
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Comparing these with the final IG errors from Table Z-4 of

CrLong 1Z 4 ° o= • , crLat = 1.37 °, ¢_ = 5.8 , (50 hr)

it is seen that almost all of the final re-entry error in the IG
case is due to launch site uncertainty and reference direction
errors.

4. Midcour se Guidance

a. The Basic Process

With a fully attitude controlled spacecraft, it is possible to

correct three components of miss at a target, corresponding to three velocity

components, each time a correction is made. In both of themidcourse correc-

tions of the standard mission, three quantities -- re-entry latitude, longitude,

and angle -- will be controlled. The following sequence of operations comprise

the midcourse correction process:

1) Following lunar injection, the spacecraft is tracked by
the three stations of the DSIF network. The data is

relayed to the control computer where the spacecraft

orbit is determined by a standard least squares tracking

program. One output of the program is the covariance

matrix of estimated re-entry conditions. When sufficient

tracking data has been obtained to reduce the orbit deter-
mination uncertainty to a small value in comparison with

the re-entry uncertainties based on the a priori injection

guidance error covariance matrix, a first midcourse
correction is computed. Two models of DSIF accuracy

were used, as explained later. A data rate of one obser-

vation set (R, E, A) per minute was employed. No range
data was included.

z) Approximately 8 to IZ hours after injection a midcourse

correction is computed and transmitted to the spacecraft.

On command, the spacecraft principal axis {rocket thrust

axis) is turned to the computed direction with an angular
accuracy of Z mils (I_) assumed in the basic comfigura-

tion. On command, the computed velocity is added using
the spacecraft vernier engines. The velocity increment
is assumed to be controlled by an accelerometer cutoff to
an accuracy of 0.4 (10 -4) times magnitude of correction.
A cold gas propulsion system is used immediately follow-
ing the hot gas correction as a vernier on the velocity
increment. The thrust cutoff is assumed to be 0.01 fps

(1_). Following the correction, the spacecraft axis is
returned to the cruise orientation.
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3) The spacecraft is again tracked until the orbit deter-
mination errors are small in comparison with an a

priori estimate of the re-entry condition including the
statistics of the first midcourse execution errors.

4} 20 to 50 hours after the first midcourse correction, a

second midcourse correction is made to remove a part

of the previous tracking and midcourse execution errors.

5} Tracking of the spacecraft continues throughout the flight

in preparation for the re-entry phase (not treated in this

report), but no further midcourse correction is required.

b. Fuel Requirements for a Single Midcourse Correction

Two factors govern the choice of times t

rections are to be made:

1 and t 2 at which cor-

1} Sufficient time must have elapsed before the first correction

in order that the orbital elements may be determined with

reasonable accuracy by tracking.

2) Consideration must be given to fuel requirements, whose

statistics are a function of t I and t 2 .

Ona particular mission it may be desirable to apply values

(weights) to accuracy and to required fuel, and to optimize a linear combina-

tion of these. We have not attempted to do this here.

The growth of orbit determination accuracy with the length of

time the spacecraft has been tracked is illustrated in Ref. _BJo As a
further

guide to the choice of the first midcourse correction time tl, it is of interest

to consider the velocity increment required for a single midcourse correction

as a function of the time of correction.

When the time t 1 at which the first midcourse correction is

to be made is sufficiently late so that tracking errors are small compared

with injection errors, then the probability distribution of the velocity cor-

rections is essentially independent of tracking errors. We have studied

fuel requirements of the first correction on this basis. For a given

A more accurate analysis based on a Monte Carlo simulation is presented
later in this section.
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trajectory, the uncorrected miss in latitude, longitude, and re-entry angle

is characterized statistically by a 3 x 3 covariance matrix _'l " Let B be

the 3 x 3 matrix which relates the midcourse correction velocity vector

components IV x to variations in latitude, longitude, and re-entry angle.

<
= B -1 (B-l) T

1 is the covariance matrix of the correction vector

Figure Z-5 presents graphs of the lcr values of the x, y, z components

_z_l
of the corrections versus time of execution for trajectories P-3 and P-4.

From Figure Z-5 it may be seen that the midcourse velocity requirement

does not vary strongly if the correction is made anywhere in the interval

from 15 to 40 percent of tf

c. Method of Analysis

The tracking and rnidcourse correction sequence described

above has been simulated by a Monte Carlo method to determine the prob-

ability distribution of errors after each correction and of the velocity

increment required for each correction. The technique which was developed

is applicable to an arbitrary number of midcourse corrections. Figure 2-6

is a block diagram of the gross features of an n-midcourse correction

simulation. Let us consider the first block of this diagram, corresponding

to the first midcourse correction. The inputs to this block are:

1) k 1, _1, _1' the actual (uncorrected) miss in
re-en%ry coordinates before the first mid-
course correction. This miss arises from

lunar powered flight burnout errors. In

general, k , _k' _ is the actual miss after
the (k-l) s_correc_on.

2) _,., the 3 x 3 covariance matrix of k,, _.,
l _ . o l

__E1 is the covarlance matrix of _he
l .

o

uncorrected miss and comes from the

powered flight analysis.

\\
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3} _.-"
_(v), the 3 x 3 covariance matrix of exe-

cution errors as a function of the commanded

correction vector v (v} is discussed below.
V

4) b_Dle' dthe 3 x 3 covariance matrix of
k, 8

(solely} on DSIF radar tracking from

t o , injection time, to tl, the time of the first
midcourse correction.

The outputs of the first block are + 6v-_, kZ, _tZ, 8Z and _Z " Vl + 6v_

is later combined with v Z + 6vZ, etc. to determine the fuel requirements.

_2 is a 3 x 3 covariance matrix of the resultant accuracy if no other correc-

tions
were made. kZ, _2' 82 and ]-_2'w together with Lv(V ) and LR2, are the

inputs to the next block. Note that_RZ comes from DSIF tracking from

t 1 to t 2 .

A fundamental part of the Monte Carlo scheme is the STL

Random Vector Generator (RVG) program which generates N Gaussian

random variables having a prescribed N x N covariance matrix. N may be

large as 50. For example, if we input _'1 to this program,
as

the program will generate three Gaussian random variables kl, _1' 81' having

_'1 as their covariance matrix.

Let us now consider in detail the operation of the first block

(first correction} in Figure 2-6:

R1 = 3 x 3 covariance

matrix of best estimate of re-entry coordi-

z)

nates before correcting.

!

_ ___
1 RVG

these will constitute the portion of miss
after the correction due to errors in orbit
determination.

-67-
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I 3) kI + 8k I

-_ _ +_ :_ : commanded correction

m
• 4) 2.v(V'I) = 3 x 3 covariance matrix of

execution errors (discussed below).

I 5) Zv(Vl) -_ RVG I-------_ 6_11 = errors in

execution of commanded correction (Note:

I + 5V_. is the actual correction which ise_xlecuted_.

I

I
I
I

I

i

I

1
I
I

I

6) I k 2 SkI

_z =-- 5_ + B l _V_,

L _z _ 5_l

miss after 1st correction

= actual remaining

_'Z T =7) = Z'I + B 1 Z..(v'_.} B 1 covariance

matrix of

r
The outputs"

k2

_Z

_z

k2

_2

!

t _z

inputs to block 2.

and Z z now serve as

This process can clearly be repeated as many times as desired to simulate

an arbitrary number of midcourse corrections.

-68-
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In the Monte Carlo simulation, a required input is the covariance

matrix of execution errors, ___v(V_. To study execution errors, it is conven-

ient to transform to spherical coordinates of the commanded correction, V,

8, %5, as shown in the accompanying diagram:

V

/
X_

_yg

Then the expressions for velocity errors in terms of basic error sources

are

6V = kb + k Vp

6V 8 = V sin _68 ,

6v%5 = v6%5 ,

where k b is velocity error due to engine cutoff control, kp is a propor-

tional accelerometer error, and 68 and 6%5 are angular orientation errors.

We assume kb, kb, 60 and 6%5 are independent gaussian errors with known

standard deviations. Provision is made, however, for these errors to be

correlated from one correction to the next. Provision is also made to

permit the standard deviations of these errors to be different for each

midcourse correction.

Since the covariance matrix _,v(V---_ is expressed in terms of

rectangular coordinates, it is necessary to introduce a rotation, U,

-69=
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relating variations in spherical coordinates to variations in rectangular

coordinate s:

6V 6V
x

6V = U 5V eY

6Vz s%

where
m

sin 6 cos O

U = sin _ sin O

COS

The final form of --___v(V---_is therefore

-sin e cos _bcos e

cos e cos _bsin e

0 -sin

I

I
I
I

I
I

V
x

-- V

Y

V
z

= vZu

[_x_ Vz]

-_P _----'_sin z

Thus /-v(V--_-may be evaluated numerically as soon as V,

manded correction are specified.

d. Simulation Results

I 1Z

b
uT+u 0

e, ,_,for the com-

U T"

I Each complete cycle of the Monte Carlo program corresponds
to a typical simulation of a moon-to-earth return. By cycling the program

i several thousand times, a random sample of outputs is obtained, from which
cumulative probability distributions of midcourse velocity requirements and

re-entry errors may be obtained.

I| _0
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Table 2-5 lists the results of a Monte Carlo simulation of the

midcourse guidance and tracking phase of trajectories P-3 and P-4 using a

sample size of 2000 runs. The DSIF and execution errors listed earlier

were assumed (for convenience, these errors and the re-entry miss before

midcourse correction are also listed in Table Z-5). Both autopilot control

and inertial launch guidance are compared.

Table 2-6 is of interest because it shows the change in re-

entry error and midcourse velocity requirement for four perturbations of the

system configuration:

l) A factor of 10 degradation in velocity execution
accuracy

2) A factor of 5 degradation in angular orientation
accuracy at midcourse

3) Tracking data rate of 1 observation set each
1 0 minutes

4) Tracking data rate of 6 observation sets each
minute (standard DSIF rate).

The entries labeled "standard" correspond to the tracking and execution errors

listed in Table 2-5 and a DSIF data rate of one observation set per minute.

From Table 2-6, it became apparent that final accuracy was

"tracking limited, " in that the final accuracy attained was essentially the

accuracy with which the orbit could be re-established by tracking from the

first to the second midcourse maneuver. Within wide limits, execution errors

were negligible. This fact made it imperative to take a second look at the DSIF

accuracy model used in the simulations. In cooperation with JPL, a new

DSIF model was decided upon: _R = 0.5 ft/sec, WA = _IE = 0. Z°, uncorrelated,

at a data rate of one set of observations per minute. The new model degrades

the accuracy assigned to angular measurements to take into account the fact

that the true angular observations are actually correlated (see Part IV). The

degradation factor depends on the assumed data rate and is lower for lower

data rates.
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Table Z-5. Standard Mission: Midcourse Velocity Requirement

and Final Accuracy

I

I

I

1
I

I

I

I

I

• System Characteristics

I. Launch site:

2. Powered flight

g uidanc e:

3. T racking:

4. Execution

errors:

Near earth-moon line (_7°W, 5°N).

Re-entry: 30°N Latitude

Present state-of-the-art inertial guidance system,
or autopilot with accelerometer cutoff.

DSIF, 3 stations, Van-les = 0"040, _- = 0 5 fps,
no range data include_, data rate = 1< "1 point/minute

Orientation angles 2 mils (1_) -4)Accelerometer constant 0.4(10 (1_)

Thrust cutoff 0.01 fps (1_)

• 50 Hr Flight (P-3), Inertial Guidance

Lat Long

(deg) (deg)

Uncorrected miss (lo') 1.37 12.4
After 1st midcourse at 8h(68 percent*). 0.23 1.3

After 2nd midcourse at 32h(68 percent _) 0. 014 0, 10

Autopilot

Uncorrected miss (lo-) 9.44 70.0

After 1st midcourse at 8h_68 percent) 0. Z3 1.3

After 2nd midcourse at 32n(68percent) 0.014 0.10

re AV

(deg) (fps)

5.75

0.58 16.1

0.04 7.3

( V w = 22.8)

31.5

0.58 49.8

0.04 7.3

( V w = 55.4)

I
I

I
I

I

• 90 Hr Flight (P-4), Inertial Guidance

Uncorrected miss (1_) u 4.94 13.4
After 1st midcourse at 12',*(68 percent) 0.48 1.5

After Znd midcourse at 64n(68percent) 0.021 0.068

Autopilot

Uncorrected miss (lv) _ 9.03 15.0

After 1st midcourse at 12'_(68 percent) 0.50 1.5

After 2nd midcourse at 64n(68 percent) 0.032 0.067

6.95

O. 67 14.0

O. 029 3.5

( V T = 16.5)

11.6

0.68 llZ

0.031 3.5

( V T = 115)

Monte Carlo Simulation, 2000 runs.



Table 2-6. Effect of Changes in Midcourse Execution Accuracy and
Tracking Data Rate

I

II
I
i

I
II

I
I

• System Configuration

90 hr flight (P-4), all characteristics as listed in Table Z-1

• Inertial Guidance

After Ist midcourse at Izh(68percent
Lat Long _re AV

*) (deg) (deg) (deg) (fps)

Standard configuration 0.48 I. 45 0.67 14.0

Velocity execution degraded (xl0) 0.50 I. 50 0.70 14.0

Angle execution degraded (10 mils) 0.50 1.50 0.67 14.0
Tracking rate 1/10 rain 1.50 4.70 Z.10 14.5

Tracking rate 6/rain 0. Z0 0.60 0.27 14.0

After 2nd midcourse at 64h(68 percent)

Standard configuration

Velocity execution degraded (xl0)
Angle execution degraded (10 mils)

Tracking rate 1/10 min

Tracking rate 6/rain

O.OZl 0.068 0.029 3.5

0.026 0.080 0.037 3.5

0.024 0.075 0.034 3.5

0.069 0. Z20 0.097 II.I

0.009 0.029 0.013 1.4

• Autopilot

After 1st midcourse at 12h(68 percent)

Afte

Standard configuration 0.50

Velocity execution degraded (xl0) 0.50

Angle execution degraded (I0 mils) 0.70
Tracking rate 1/10 rain 1.6

Tracking rate 6/rain 0.23

r 2nd midcourse at 64h(68 percent)

1.5 0.68 I12

1.5 0.70 I12

2.2 0.95 I12

4.7 2.2 I12

0.7 0.33 I12

Standard configuration

Velocity execution degraded (xl0)

Angle execution degraded (10 mils)

Tracking rate 1/10 rain

Tracking rate 6/rain

0.022

0.026

0.024

0.069

0.009

0.067 0.031 3.5

0.085 0.038 3.5

0.076 0.035 4.3

0.220 0.097 ll.O

0.029 0.013 1.5

I

I
I

Monte Carlo, 2000 runs
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New simulations were then performed using the new DSIF model.

Since it has already been established that final accuracy was tracking limited,

it was of primary interest to simulate the tracking from first to second mid-

course maneuver. The results are presented in Table Z-7 for Trajectory P-4,

corresponding to the second midcourse correction being made at 64 hours (as

before) and also at 80 hours.

Table 2-7. Standard Mission

!

i

T racking Interval

{hours from injection)
_Long _Lat _

(deg) (deg) {deg)

1Z-64 O. Zl O. 067 O. 096

IZ-80 0.053 0.016 0.023

Final accuracy for P-4 using new DSIF model (orR = 0.5 fps, _A = _E = 0. Z °,

one set of observations per minute), corresponding to making the second mid-

course correction at 64 hours and 80 hours, respectively.

!

!

i

I

i
!

I
I

!

The accuracies quoted in Table 2-7 are somewhat pessimistic, since no a priori

information was used in the tracking. If a priori information were included, one

could expect the results at 64 hours to be reduced by at least 50 percent. The

results at 80 hours, however, will not be very sensitive to a priori data.

We have already seen in Table Z-6 that the fuel requirement (AV)

for the first midcourse maneuver depends only on injection errors and is insen-

sitive to tracking accuracy or execution errors, within wide limits. Thus, the

fuel requirement for the first rnidcourse maneuver, given by Table 2-5, is not

altered by using the new DSIF model. The fuel requirement for the second mid-

course maneuver, however, depends on how well the first maneuver is performed,

which in turn depends on DSIF accuracy. Thus for P-4, the fuel requirement for

the second midcourse made at 64 hours will be approximately 11 fps (68 percent

level) when the new DSIF model is used. When the second midcourse is made at

80 hours for P-4, the fuel requirement will be somewhat higher due to the loss

of sensitivity. We have not performed the exact simulation to obtain this value.
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considerations:

We shall summarize this section by drawing the following

l)

z)

3)

4)

The system simulated, when used with two

midcourse corrections, provides adequate

accuracy for manned re-entry. Typical

re-entry dispersions are (inertial launch

guidance, 90 hour flight, 2na midcourse at

64 hours):

cLat = 0.07 degree (4 n mi)

0"Long = 0. 2 degree (I0 n mi)

¢_re = 0. 1 degree

(These values may be reduced by a factor of

4 by making the second correction at 80 hours.

For comparison, a typical manned capsule

with an L/D = 0.5 should allow reaching a

landing site anywhere within a re-entry

footprint 800 n mi in width and extending from

a point 1500 n mi from the sub-re-entry point

to a point 3500 n mi from re-entry. A re-entry

flight path angle tolerance of 3 degrees - full

corridor width - can be permitted).

Compared with an allowable 3 degree corridor
width (+1.5 degree): neither guidance system

(or t¢) will suffice uncorrected. Both systems
and ff.'s are very accurate after two corrections

(_'0.I1 degree 1_)o

Following execution of the first midcourse

correction, there is essentially no difference

in re-entry accuracy between the autopilot and

inertial systems for a given flight time.

The autopilot controlled flights require Z to 5
times as much midcourse fuel (velocity incre-

ment) as the inertia!iy guided flights. The total
velocity increments required are (68 percent):

50 hours IG 38 fps

50 hours autopilot 72 fps

90 hours IG Z5 fps

90 hours autopilot 123 fps I
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5) Employing two midcourse corrections, degradations of a

factor of I0 in velocity execution accuracy or a factor of

5 in angular orientation accuracy cause negligible change

in re-entry accuracy.

It should be reemphasized that the mission analysis carried out

here has neglected the effects of physical constant and station location errors

which will degrad e the performance displayed here somewhat. However, the use

of the full DSIF data rate and of ground based range data and possibly moon-

based doppler could all serve to improve the tracking safety margin.

C. Minimal Mission

The minimal mission discussed in this chapter has many features in

common with the standard mission of Section B. Therefore, although computa-

tional results are given for all phases_ in order to avoid undue repetition, only

those features which are unique to this mission will be stressed.

i. Mission Description

The moon-earth mission analyzed inthis chapter is a "minimal"

mission in that it meets the following conditions:

a) Attitude is controlled by spin-stabilization

b) Lunar powered flight lasts until fuel depletion, or as an alter-

native an accelerometer cutoff may be used.

c) Restrictions on re-entry are loose in that accelerations and

heating rates outside manned re-entry tolerances are permitted.

Only longitude and latitude of re-entry are controlled by mid-

course corrections°

At launch, the vehicle is pointed in the proper direction and spun up,

either slightly before or slightly after it is released by the launching mechanism.

Maintaining this fixed attitude, the vehicle burns either to fuel depletion or to

accelerometer cutoff, depending on the details of the system employed. Two

spin-stabilized midcourse corrections to modify re-entry longitude and latitude

are scheduled at pre-selected times tI and tz, where tI is typically i0 hours

after launch and tZ is typically 20 to 30 hours after tI. The free flight of the

spacecraft is tracked by the DSIF from lunar burnout until tl, at which time an

orbit determination by least squares fit is performed. Both midcourse velocity

corrections are computed on the basis of this tracking prior to tI. The remain-

ing free flight portions of the trajectory are then tracked by DSIF for two purposes:

-76-
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a) This additional information may be used to slightly modify the
magnitude and timing of the second correction.

b) The tracking is used in the prediction of the actual re-entry.

2. Transit Trajectory

In the generation of moon-to-earth free flight trajectories for the

minimal mission, the longitude of the lunar launch point was chosen to be near

the vertical landing area of a spacecraft on a 66-hour earth-moon flight

(k _ -50 degrees, _,-_ 0 degree). Several trajectories originating in this area

were generated, and three of these were selected for detailed analysis. These

trajectories (S-1, S-3, and S-5) correspond approximately to the following flight

time re-entry combinations:

S-1 tf = 50 hours _re = 170 degrees (i.e.,

S-3 tf = 90 hours _re = 110 degrees (i.e.,

S-5 tf = 90 hours _re = 170 degrees (i.e.,

80 degrees from the horizontal)

20 degrees from the horizontal)

80 degrees from the horizontal)

All three return to approximately 30°N latitude at re-entry. Table 2-8 lists

the complete burnout and re-entry conditions for the trajectories.

Miss coefficients {i. e., variations in re-entry conditions withres-

pect to variations in burnout conditions) are given in Table 2-9 for S-I, S-3 and

S-5. Figures 2-7 and 2-8 show projections of the S-5 trajectory on the x-y and

x-z planes. In this equatorial coordinate system, the x-axis is toward the

vernal equinox while the z-axis points North in a right handed system. The near-

restilinear character of the steep re-entry trajectory is apparent in these figures.

3. Powered Flight and Injection Guidance

Launch from the moon's surface is to be effected using a single

stage spin-stabilized vehicle. As in the standard mission, I = 300 and liftoff
sp

thrust-to-earth weight is four. Using these parameters, it is possible to fit

constant attitude powered flight profiles to the burnout conditions of S-I, S-3

and S-5.

The above three constant attitude powered flight profiles are quite

similar, so that for the error analysis, a single nominal profile was used to

generate the A 2 covariance matrix of in-plane burnout errors. (Previous

studies of similar lunar powered flight profiles [lJ have shown that this is a
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Table Z-8.

Burnout:

Trajectory

Burnout and Re-entry Conditions for Trajectories
S-l, S-3, S-5

r A _ v _ A
{ft) (deg) (deg) (fps) (deg) (deg)

I

I
i

I
i
I

I

I
I
i

i
i

I
I

S-I

S-3

S-5

Burnout time

S-1

5733000. -45.009 4.022 9494.47 65.674 90.932

5733000. -45.0803 5.19 8710.07 78.49 77.486

5733000. -45.013 3.867 8445.96 80.862 92.755

191. 790 minutes after Oh GMT, Feb. 5,

S-3 774.214

S-5 689.387

Re -entry Conditions :

Trajectory
Long

(deg)

Lat

(deg)

_re

(deg)

1963 (maximum
lunar

declination)

Feb. 20,1963 (minimum
lunar

declination)

Feb. 5, 1963

tf Altitude

(rain) (ft)

S-I

S-3

S-5

-93. 216

-60. 359

-82. 914

31. 290

32. 266

28. 707

163. 226

109. 301

164. 658

3014 400,000

5219 4D0,000

5363 400,000
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Trajectory S-i

Ar = 50, 000 ft
o

AX ° = 1 deg

&_o = I deg

Av = 50 fps
O

A_o = 1 deg

_A ° = Ideg

Trajectory S-3

Ar = 5,000 fto

A_, ° = 1 deg

A_o = l deg

Av ° = 50 fps

A_o = I deg

= 1 deg
o

Trajectory S-5

Ar = 50,000 ft
0

A_o = 1 deg

L_ ° = I deg

Av = 50 fps
O

A_o = 1 deg

AA = 1 deg
O

Note that Ar

trajectories.
= 5,000

Table Z-9. Re-entry Miss Coefficients

Atf, rain A_r e, deg ALatre, deg ALongre, deg

- 21.3 + O. 386 + O. 003 +-4. 495

+-20.5 + 5. 695 + 3. 199 -19.937

0.3 -.0.459 + 1.236 + 0.735

- 35.1 + 1.893 +0.451 + 4. 556

+ 28.8 +-7.901 +-2.515 -27.766

+ 0.3 + 1. 504 -15.100 - 3. 247

- 4 - 1.57 - 0.29

+ 82.88 - 3.56 - 1.23

+ 5.51 + 2.28 , 1.9

- 53.5 -17.40 + 2.94

+126.7 - 3.4 - 2.47

- 26.8 + 6.00 - 4.94

- 2.72

-29.33

+ 3.94

-17.66

-39.93

+ZO. 3

- 83.4 + 5. 068 + 1.340

+ 68.8 + 1.241 + 1.204

- 3.5 + 0.694 - 5. 289

-118.4 + 8.046 + 1.852

+116.3 + 2.109 + 1.424

+ 2.2 + 0.886 - 8.617

+ 9. 088

-20. 227

- 0.331

+ 9. 998

-34. 158

- 2.457

on trajectory S-3, but

-79-
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FEB. 5, 1963 LAUNCH

60HR

I
I
I

I
I

I
I

l
I

72HR

84HR

85HR

86HR

87HR

89HG

0.8

0.7

- 0.6

I
I

I
I

L..__ I I I
-0.6 -0.5 .0.4 -0.3

Figure Z-7.

89.9 HF
I I

-0.2 -0.1 0.1 (109)
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X (FEET)

DIRECTION OF
VERNAL EQUINOX

Trajectory S-5. Equatorial Plane View
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valid approximation).

listed below:

V = 8473fps, h = 25,000 ft,
O O

Energy = 5.68 (I06) ftZ/sec Z,

Since this is a rather flat trajectory,

The burnout conditions for this nominal profile are

_o 80.0 deg (10 degree elevation
above horizontal)

powered flight arc = 1.6 degrees.

it suggests that consideration shou/d be

given in any actual mission to the terrain clearance problem. If terrain clear-

ance should become a problem, a more lofted powered flight correcponding to a

faster flight time or to a more easterly launch site would be required.

The basic powered flight error sources for cutoff on fuel depletion

versus cutoff on command from an integrating axial accelerometer are listed

below:

Fuel Depletion Axial Accelerometer

Dry weight, w d (go)

Propellant weight, Wp (go)

Thrust, T (go)

I (go)
sp

Launch angle, _Lo (deg)

Liftoff weight, w (%)
O

Thrust, T (go)

I (go)
sp

Launch angle, _Lo (deg)

Acceleroxneter scale (go)

Accelerometer bias (0.01 g)

In addition to these error sources, the miss due to not knowing the exact posi-

tion and orientation on the moon of the launch mechanism was considered.

Uncertainties in position and orientation were considered to have the same

values as in the standard mission, i.e. :

Crlat = Crlong = 0"050' Salt = 1000 ft

15 uncertainty in orientation of trajectory plane (launch azimuth error) =

0. Z5 degree.

Table Z-10 shows the 1_ values assigned to each basic error source,

together with the standard deviation, variance and covariance of the resultant

-8z95
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miss at re-entry due to each error source for S-1. Since the source errors

are independent, the miss variances and covariances from the sources may be

summed to yield the total variance and covariance of the miss in longitude,

latitude and angle of re-entry. This analysis was performed for S-I, S-3, S-5,

and both fuel depletion and accelerometer cutoff cases.

The total variances and covariances described above correspond to the

uncorrected miss at re-entry. The uncertainties in longitude and latitude may

be characterized by 1_ (40 percent) ellipses in longitude-latitude. Table Z-ll

lists the semi-major axis, the semi-minor axis and the angle a from the longi-

tude axis to the major axis for each ellipse.

Table 2-11. Parameters of 40 Percent (1_) Uncorrected Miss Ellipses

I
Semi -major Semi-minor a

Axis Axis Angle $_

Trajectory (deg) (deg) (deg) (deg)

I

I

I

I

S-1 Fuel depletion 7.95

S-1 Accelerometer cutoff 6.96

S-3 Fuel depletion 17.97

S-3 Accelerometer cutoff 1 1.56

S-5 Fuel depletion 1 1.81

S-5 Accelerometer cutoff 8.53

3 86

3 83

1 99

I 34

Z 47

Z 16

O. Z7 Z. 51

2.4Z Z. 06

5. 17 13.65

O. ZO I. 92

-4. 16 6. Z9

1.6Z 0.66

I

!

I

I

I

I

It is seen that no marked decrease in re-entry _long is obtained by

using an accelerometer cutoff. This can be explained by referring to

Table Z-10, where this component of miss may be traced back as arising

mainly from liftoff angle error 5_L o. This error source is unaffected by the

type of velocity cutoff. Similarly, _lat is not appreciably reduced by using

accelerometer cutoff. (InS-I andS-5, this component of miss maybe traced

back as due principally to azimuthal misalignment, which is unaffected by the

type of velocity cutoff.) One concludes, therefore, that with the assumed

uncertainties in launch position and orientation, accelerometer cutoff is only
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weakly effective in reducing re-entry misses. However, if the initial pointing

and spin-up errors (A ° and _Lo) could be reduced, then accelerometer cutoff

would be of great value in further reducing themiss.

4. Midcourse Guidance

a. Basic Method

The underlying principal of spin-stabilized midcourse guidance

is that velocity impulses applied along the spin axis at different times produce

different effects at the target. This is illustrated schematically below, where

the effects of 1 fps velocity impulses along the spin axis at two times, t 1 and

t_, are plotted as vectors in longitude and latitude of re-entry. In this

diagram, any vector miss in the longitude-latitude plane can be expressed as a

linear combination of the t 1 and t z vectors, and can therefore be cancelled

by velocity increments of the proper magnitude and polarity applied along the

spin axis at times t 1 and t Z.

Latitude

t2 Miss

Longitude

For trajectory S-I, the effects of velocity increments applied

along the spin axis are plotted in Figure Z-9 as vectors in the longitude-latitude

plane with the time of the impulse as a parameter. In general, it is desirable

that these vectors sweep out a wide angle with time, in order thatmi:sses in arbi-

trary directions may be efficiently cancelled. It is also generally true that

expected midcourse fuel requirements are reduced if the times t 1 and t Z are

selected in advance so that the most probable uncorrected miss vector (major

axis of error allipse)lies between the t 1 and t 2 vectors. Otherwise, the

correction at time t_ will probably have to cancel, rather than reinforce, part

of the t 1 correction in order to cancel the miss.
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Trajectory S- 1

1.0 °.

O. 5 °-

I
-0.5 °

Latitude

i00 fps Impulses

h 16h _ 8h

Longitude

Iso I0o .Iso I0o I so :,Z. 1. l Z. Z.

Figure Z-9. Effect on Re-entry Point of Velocity Impulses Applied

Along the Spin Axis at Different Times.

b. Midcourse Fuel Requirements

Midcourse fuel requirements for the minimal mission can be

accurately predicted from the statistics of the uncorrected miss, ignoring the

weak interaction with uncertainties in orbit determination. The analysis is

similar to computing the first correction for the standard mission and will not

be reproduced here. The results are presented in Table Z-IZ and Figure 2--10

for different combinations of correction times, t 1 and t Z, for S-I, S-3, S-5.

It can be seen from Figure Z-10 that, for the source errors

assumed, the 50-hour trajectory (S-I) requires approximately three times the

midcourse velocity increment required for 90-hour flights (S-3 and S-5).

c. Error Analysis and Final Accuracy

For a mission that used spin-stabilization midcourse correc-

tions, there are two basic problems associated with the error analysis, First,

a midcourse correction logic must be chosen. Second, the non-gaussian

statistics resulting from the products of gaussian variables must be analyzed.

The simplest possible guidance logic is proposed here for

the minimal mission:
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Table 2-12. Midcourse Velocity Kequirements for the Minimal Mission

I Trajectory

0" o-

Time 1 Time Z Vl vz
Guidance (hr) (hr) (fps) (fps) PVl v2

I

I

I
I

I
l
I

I
I

I
I

l
I

I
I

S-I

S-I

S-3

S-3

S-5

S-5

Fuel

depletion

Acceler -

orneter cutoff

Fuel

depletion

Acceler-
ometer cutoff

Fuel

depletion

Acceler -

ometer cutoff

8 32 288 1170 -0.500

16 40 370 1266 -0.086

Z4 40 646 1339 -0.338

8 32 254 1160 -0. 511

16 40 327 1241 0. 003

24 40 57Z 1275 -0. 236

6 60 151 282 -0.995

15 60 ZZ6 368 -0.995

30 60 380 557 -I.000

45 75 359 760 -0.998

6 60 67 130 -0.978

15 60 100 167 -0.990

30 60 168 Z50 -0.994

45 75 158 339 -0.991

12 64 179 Z07 0.997

3Z 64 357 Zl -0.703

IZ 64 103 388 0.44Z

32 64 206 35Z 0.128
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60O
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S-I

FUEL DEPLETION ACCELEROMETER CUTOFF
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FUEL DEPLE_ON
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Figure 2- I0.

S-5

FUEL DEPLETION ACCELEROMETER CUTOFF

t ! t t
12-64 32-6 4 12-64 32 h -64 h

EXECUTION TIMES

Midcourse Velocity Requirements for Various
Correction Time Pairs. (Dots show I_ values

of the two corrections)
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I) Select the two midcourse correction times (tI and t2).
in advance

2) Track from injection until just before t1

3) Determine the apparent miss from the tracking data

4) Calculate the correction velocities,

5) Fire V 1 at t 1

6} Fire V 2 at t 2.

V I and V 2

The following operations are performed for each Monte Carlo

simulation of a flight:

i) Select the uncorrected miss and the spin axis error with

the Random Vector Generator from their a priori distri-

bution. (These are selected simultaneously since they
are correlated. )

2) Select the tracking error, using the tracking covariance
matrix.

3) Calculate the apparent miss, which is the sum of the

actual miss and the tracking error.

4) Calculate the desired correction velocities from the

apparent miss, using the sensitivities corresponding to

nominal spin axis orientation.

s) Calculate the actual fired velocities by adding the randomly
selected bias and scale-factor errors.

6) Calculate the effects of firing the actual velocities with the
actual spin axis orientation.

7) Add the correction effects to the uncorrected miss to

determine the final miss.

The Monte Carlo simulation is quite fast. If all of the runs for

this report (12) were submitted to the STL 7090 computer in one batch, the total

running time would be less than 3.5 minutes.

Table 2.-13 shows the results of 1000 Monte Carlo samples for

each of several sets of errors for trajectories S-I andS-5. The uncorrected

miss covariance matrix for fuel depletion was used in each case since the

_89_102
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Table Z- 1 3. Final Accuracies for Minimal Mission Utilizing Two Spin
Stabilized Midcourse Corrections. Results are 99%

Values Out of 1000 Monte Carlo Runs, Nominal and Per-
turbed Error Sources

TrajectoryS-l, Nominal Errors

(Corrections at 16 and 40 hours)

Tracking Error XO. 1

Velocity Bias XO. 1

Velocity Scale Factor XO. 1

Spin Axis Orientation XO. 1

All Errors XO. l

Resultant Re-entry Miss
(99% values)

Long Lat

(deg) (deg)

2.26 1.55

1.62 1.48

2.28 1.54

Z. 26 1.53

1.75 O. 82

0.21 0.16

Trajectory S-5, Nominal Errors

(Corrections at 32 and 64 hours)

Tracking Error XO. 1

Velocity Bias XO. 1

Velocity Scale Factor XO. l

Spin Axis Orientation XO. 1

(Uncorrelated)

All Errors XO. l

1.74 1.15

1.69 1.09

1.74 1.14

1.56 1.13

1. O0 O. 58

0.16 0.11

-9o-103
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improvement in uncorrected miss obtained with accelerometer cutoff is slight.

For each trajectory, runs were made with the nominal errors, with each error

reduced by a factor of ten, and with all errors reduced by a factor of ten

s im ult ane ous ly.

The nominal execution errors (lcr) used are:

Velocity bias Z fps

Velocity scale factor 0.0Z

The spin axis orientation error used corresponds to indepen-

dent errors of 0.5 degree (lcr) in azimuth and elevation at launch. Since the

initial miss is also a function of launch azimuth and elevation, it is correlated

with the error in spin axis orientation. This correlation is included in the

Monte Carlo Program.

The standard tracking error used is the result of tracking to

the time of the first correction at one point per ten minutes with the DSIF on the

assumption of 0.5 fps and 0. Z degree (lcr) errors.

From the results it can be seen that the tracking and spin axis

orientation errors are dominant for the S-I trajectory and that the velocity

scale factor and the spin axis orientation are dominant for the S-5 trajectory.

For both trajectories, however, improving the knowledge of the spin axis gives

the largest reduction in final miss.

Since the spin axis orientation error is important in both

trajectories, the accuracy with which it can be measured with tracking data was

calculated. In the calculation it was assumed that the direction of the velocity

with respect to the moon at burnout is along the spin axis. This is a reasonable

assumption since the powered flight is very short.

The accuracy with which the three components of burnout

velocity can be measured was determined with tracking data up to the time of the

first correction. These accuracies were then converted to accuracies in the

angles e and ¢ used in the simulation. (The angles 8 and ¢ are the usual

spherical coordinates of the velocity vector relative to the inertial x, y, z

reference.) The following are the results:

-91-
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T rajectory
A Priori 1_ Errors Tracking {only) 1_

{milliradians) Error s
{milliradians)

e e

S-1 4.69 3.99 0.398 16.8

I

I
I

I
l
I
I

I

I
I

I
I

I
I
I

S-5 4. 62 4. 27 O. 840 19.0

The tracking data allows a considerable improvement in the

knowledge of 0, but tracking accuracy is not as good as the a priori knowledge

of _. However, ff the data rate were increased {e, g., to 1 point per 10 seconds),

improvement in the knowledge of _ could also be obtained.

The result of reducing all the errors by a factor of 10 simul-

taneously is essentially a reduction of the final miss by a factor of 10. This is

to be expected since the final miss is the sum of the tracking error, the velocity

bias error, and errors proportional to the correction velocities. For the

trajectories studied, the magnitude of the required correction velocities are

essentially the same for the normal and the reduced tracking error. As a result,

the miss proportional to velocity is reduced almost exactly in the same ratio as

the other terms. If the tracking error were comparable to the initial miss, on

the other hand, the proportional miss would be reduced by a greater factor.

D. Orbit Determination for Return Mission

This section deals with aspects of orbit determination which are peculiar

to the moon-earth mission, as opposed to the general discussion contained in

Part IV. For the lunar return missions, it is assumed that orbit determination

is effected by tracking the free flight portions of the trajectory with the three

DSIF stations, and then applying least squares procedures to estimate the six

orbital elements at a chosen epoch. The radar elements used were range rate

(1%), azimuth (A) and elevation (E).

The primary purpose of tracking the spacecraft is to establish the

various free flight trajectory portions with sufficient accuracy to enable the

midcourse corrections to be computed. This is an essential function for both

the standard and the minimal missions, since we have already seen that the

uncorrected misses are too large to be acceptable. Thus, one of the objectives
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of orbit determination analysis is to simulate this real-time function. A

secondary objective is to determine in advance the favorable times at which to

make the midcourse maneuvers. This is done by simulation methods, also, and

must take into account fuel requirements as well as final accuracy requirements.

Lastly, orbit determination analysis must be concerned with making these

simulations as realistic as possible. This involves using noise models which

are as realistic as possible and take into account "hidden" errors such as

correlations and biases in the observation.

1. Standard Mission

As mentioned earlier, some of the initial tracking simulations

were done using an "old" model for DSIF noise in which v_ = 0.5 fps,

_A = °'E = 0o 04 °, with all observations being uncorrelated. These results

were used in Monte Carlo simulations of the standard mission, and are

described below.

On the standard mission, the time of the first midcourse correc-

tion was set somewhat arbitrarily at 12 hours. This choice was based

primarily on fuel rather than accuracy requirements. {Table 2-7 has shown

that even with the old {optimistic} DSIF noise model, tracking errors dominate

the uncertainty in re-entry just after the first midcourse. } Thus the critical

tracking period, to determine final accuracy, was fr:om 1Z hours after injection

to the time of the second midcourse maneuver. Table 2-14 shows re-entry

uncertainty due to tracking in this interval, as a function of the time of the

second midcourse correction for trajectory P-4. This table includes the effect

of a priori data at 12 hours and is based on the old DSIF model.

In Table 2-14, a priori information was handled in an approximate

way as follows: Let A 1 be the 6 x 6 covariance matrix of Oh - 12 h tracking,

evaluated at 12 hours. Let AE,

[olo]
_- Lo _ZvJ

be the 6 x 6 covariance matrix of execution errors, where _V is the 3 x 3

covariance matrix of execution velocity errors evaluated for a correction of
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magnitude "Za" in the x, y, z directions. Then A

6 x 6 a priori tracking covariance matrix. If A 2

matrix for tracking from 12 hours to the second midcourse,

12 hours, then
2'

A 2 = + (A 1 + AE )-1

+ A was used as the
1 E
denotes the 6 x 6 covariance

evaluated at

is the covariance matrix representing tracking from 12 hours to the second

midcourse correction, including a priori data. To compare A 2 and A 2 it is

convenient to update these matrices to re-entry time and look at the corres-

ponding uncertainties in re-entry conditions. This is done in Table 2-15.

Table 2-14.

T racking
Interval

(hours from
lunar B. O. )

12 - 32

12 - 48

12 - 64

12 - 80

Standard Mission, Trajectory P-4. Re-entry. uncertainty resulting
from 12 h to second midcourse correction, a R = 0.5 fps
a A = a E = 0.04 ° , one set of observations per minute. A priori

information included, correlations and biases neglected (old DSIF
model}

a a a

Longitude Latitude Re-entry angle
(deg) (deg} (deg}

0.45 0.14 0.21

0.15 0.047 0.067

0.065 0.021 0.030

0.034 0.010 0.015

I
I

I
I
I

Table 2-15.

Tracking
Interval

(hours from
lunar B. 0. )

12 - 64

12 - 80

Standard Mission, Trajectory P-4. Re-entry uncertainty resulting
from using or not using a priori data in tracking from 12 n to second
midcourse correction. _ri_ = 0.5 fps, _A = aE = 0.04 ° , one set
of observations per minute (old DSIF model}

With A Priori Data

along alat _

O. 065 O. 021 O. 030

O. 034 O. 010 O. 015

Without A Priori Data

along ala t 0-_

O. 140 O. 045 O. 063

O. 041 O. 013 O. 018

107
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In this table, it is seen that when the second midcourse correction is made at

64 hours or earlier, final uncertainty can be significantly reduced by using a

priori data. On the other hand, at 80 hours a priori information does not

strongly affect the final uncertainty.

The Monte Carlo runs using the old DSIF model indicated that even

after the second midcourse maneuver the final accuracy was stilltracking

limited. This led to a re-examination of the DSIF noise model to insure that

the basic assumptions were as realistic as possible. The result was a new,

more conservative model for angular noise which included correlations and

biases:

A or E Noise

Component RMS Value Time Constant

Random 0.01 deg I0 sec

Random 0.01 deg 5 hours

Bias 0. 005 deg co

For a nominal data rate of one set of observations per minute, it can be shown

that the random components of noise in the above model produce an effect which

is no worse than that produced by uncorrelated noise having RMS value 0.2 deg

(see example 3 of Part IV}. Thus, by simulating the tracking operation with

err = 0.5 fps, _A = _E = 0.20, uncorrelated, at one observation set per

minute (which we shall call the new DSIF noise model), we can study the effects

of the random components of noise. (For different data rates, the degradation

factor on angles is different. ) Biases will be considered later.

Table 2-16 shows a comparison of the old and new DSIF noise models

for tracking from first to second midcourse correction, Trajectory P-4. Also

included is the result of using no angular data at all (_A = _E = co), from

which one can see that almost all the information is contained in the R data.

No a priori data was used in this table. Including a priori data would reduce

the uncertainty for 12 h - 64 h tracking by approximately 50 percent, but would

probably not affect the 1_ h - 80 h tracking significantly.

The deleterious effects of unsuspected biases in angular measurements

can be studied by the methods described in Part IV. Table 2-17 contains the

-95-
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results of such an analysis for the old and the new DSIF models. This table

shows the effects of "unsuspected" biases in A and E measurements for each

tracking station of RMS (a priori) value 0.01 degree. It is seen that the old

DSIF model is quite sensitive to angular biases, since it weights angular data

more heavily. In fact, comparison with Table Z-15 shows that it is better not

to include angular data at all than to weight it according to an R_MS value of

0.04 degree when the RMS bias is 0.01 degree. One sees that angular biases

do not affect the new DSIF model significantly, since angular accuracies have

been considerably degraded.

Table Z-I 7. Standard Mission, Trajectory P-4. Effects of unsuspected biases

on re-entry uncertainty. In least squares fit, data is weighted

according to the R/VIS of its uncorrelated component. Data rate is

one set of observations per minute

T racking
Interval

(hours from

lunar B. O. )

12 - 64

1Z - 80

12 - 80

Tracking Noise
Uncorrelated Bias

_R _A' _E

(fps) (deg)

0.5 0.04

0.5 0.04

0.5 0.7

(deg)

0.01

0.01

0.01

Re-entry Uncertainty

_long _lat _

{deg) (deg) (deg)

0, Z7 O. 084 O. 1Z

O. 071 O. 020 O. 031

0.055 0.017 0.024

I
I

I

I

I

I

I
I

2. Minimal Mission

For the minimal mission, the critical tracking period was, of

course, the period from lunar burnout to the time of the first midcourse

correction. (Subsequent tracking was not utilized in the simple guidance logic

for this mission, although this logic could be modified to include later tracking

if it were considered desirable or necessary.) Both the old and the new DSIF

noise models were used in the tracking simulations. Since the latter model is

of chief interest, we have summarized the results in Table 2-18. This table

does not include any a priori information. In the Monte Carlo simulations, a

priori information is entered separately and combined with tracking information

in the computer.
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Table 2-I8. Minimal Mission Tracking Results for o- = 0. 5 fps,

_rA = o"E = 0, Z°, one set of observations Rer 10 minutes

Trajectory

S-I

S-5

S-5

Tracking Interval
(hours from

lunar B. O. )

O- 16

O- 12

O- 32

Re- entry Unce rtainty

_r long

(deg)

0.63

O. 49

0.15

O"
lat

(deg)

0.30

1.17

O. 2Z

C or r elati on

Coefficient

P

0.3

0.67

0.38

i

II
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II
I
II

I
I

I

I
I
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HI. CIRCUMLUNAR TRAJECTORIES

This Part describes the study plan for research currently being performed

in the field of lunar trajectories, and some preliminary results and considerations

which are available.

A. Free-Return Circumlunar

I. Introduction

We shall discuss first a preliminary analysis of free-return

circumlunar trajectories which led to a better understanding of the overall

properties of such trajectories and subsequently to the Analytic Circumlunar

Program. The model on which this analysis and the Circumlunar Program is

based was described and used in Part I in connection with moon-to-earth trajec-

tories. It consists of enclosing the moon in a sphere within which only the

moon's gravity is considered and outside of which only the earth's gravitational

field is in effect. With such a model, a circumlunar trajectory consists of a

conic in the moon phase (within the sphere) and two conics in the earth phase,

as shown in Figure 3_I. These conicsare such that positions and velocities match

at the phase boundary. The apparent discontinuity in the velocity in Figure 3"1 is

due to the fact that both earth-frame and moon-frame conics have been shown in

a single figure; since the moon is revolving about the earth a velocity transla-

tion is required at the junction.

We shall treat three dimensional circumlunar trajectories,

restricted to single revolution trajectories. That is, they will begin near the

earth, enter the sphere of action in some manner, and then exit and return to

the earth. The moon-phase conic will be hyperbolic, except in very rare cases,

whereas each leg of the earth-phase conics may be independently elliptic,

hyperbolic, or parabolic.

Z. General Analysis

Consider now some of the general properties of circumlunar

trajectories. As indicated in Figure 3- 1, there are two"corridors" connected

with the moon's sphere of influence, i. e., an entrance corridor lying in the

western hemisphere of the moon and an exit corridor lying in the eastern

hemisphere. These corridors exist with respect to a moon-centered coordinate
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Figure 3- 1. Schematic of Circumlunar Flight
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system. It is realized that circumlunar trajectories other than the type shown

in this figure exist, such as one going considerably beyond the moon [32], but

only that class of trajectories which produce the closest approach to the moon
l,. J

will be considered here.

Figure 3-2 shows the configuration of these corridors on the

moon's sphere of influence as seen by an observer on the moon. The horizontal

plane is taken as the moon's orbit plane. If the complete class of trajectories

launched from the earth from a fixed altitude and impacting the moon were

considered for a fixed time of flight {or equivalently a fixed energy) then all

trajectories launched by direct ascent with flight path angle _L will have a

fixed in-plane conic section. The only degrees of freedom which this conic may

have is then the orientation of its plane and all possible orientations may be

produced by essentially rotating the conic section about the line connecting the

center of the earth and the _L = 0 point on the sphere of influence. The result

will be the generation of the constant _L contours shown in Figures B-Za. That

is, the trajectory will have its velocity vector pointing from this contour to the

center of the moon when it reaches the sphere of influence. For the class of

trajectories which produce circumlunar results, i. e., returning to the earth's

atmosphere, these constant _L contours will be displaced slightly to compen-

sate for non-impact. Also, it is clear that launching from a parking orbit will

represent the limiting flight path launch azimuth contour of _L = 90 degrees.

It is interesting to observe that the set of all possible parking orbit launched

trajectories will form the envelope of all direct ascent trajectories.

Returning to the assumption that the earth-phase energy on the

outward leg is fixed, then the magnitude of the vehicle's earth-phase velocity

u at the sphere will remain constant whereas its direction will vary within a

few degrees of the earth=moon line. The moon-phase entry velocity v will

depend on the vector addition, v = u - u where u is the moon's
m s rn

orbital velocity. Referring to the velocity vector diagram in Figure B-2a, it is

seen that v can take on various magnitudes, increasing as its direction moves

further from that of the earth-moon line. The lowest velocity {or energy) v

occurs when the earth-phase velocity is directed to the left of the earth-moon

line, which will be the case for eastward launches.
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The analysis of the exi___t corridors of circumlunar trajectories

is very similar to that of the entry corridors which were just discussed. Here,

however, to prevent the discussion from becoming too involvedj it is necessary

to restrict the outward leg to a "single" launch trajectory. This is shown in

Figure 3- Zb. By a single launch trajectory it is meant that the magnitude and

inertial direction of the velocity at entry into the sphere is fixed whereas the

entry point may vary. This is acceptable since small perturbations of the launch

conditions will have considerable affect on the entry position but very little affect

on the magnitude and orientation of the entry velocity. Choice of position of

entry into the sphere allows two degrees of freedom which may be looked upon as

freedom of impact in the impact parameter plane_ that is, in a plane perpendic-

ular to the hyperbolic entry asymptote. Once this impact point has been chosen,

the complete circumlunar trajectory will be determined. Also, for a particular

point in the impact parameter plane, the trajectory may or may not return and

impact the earth. In any case, there will be a certain region in the impact

parameter plane representing earth impact return trajectories. Because uf a

one-to-one correspondence of the points in the impact parameter plane to points

at exit on the moon's sphere of influence, a similar region exists at the sphere.

This is shown in Figure 3-2b. Here, contours similar to those of the entry

corridor are shown. Specifically, these are constant earth re-entry flight path

angle contours, and again B = 90 ° represents the grazing or limiting case.
r

Analysis of the exit vector diagram is similar to that of the entry

vector diagram. One significant difference is that since the entry velocity

vector has been chosen to be fixed, then the moon phase entry velocity will be

fixed since v = u = u . Thus, by conservation of energy, the magnitude of
m

the moon-phase exit velocity will be equal to its entry velocity and therefore

constant. This is indicated in the exit vector diagram by the spherical boundary

on the v vector. By observation, it is clear that the earth-phase exit velocity

will vary in magnitude. Note that the high energy return trajectories are

closer to the earth-moon line indicating that these will have a tendency to

approach the earth in a counterclockwise manner, whereas the low energy

return will approach the earth in a clockwise manner. In any case the return

trajectory may approach the earth in a plane having any inclination with the
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moon's orbit plane leading to the conclusion, similar to that for launch

trajectories, that the grazing return trajectories form the envelope of all

possible return trajectories.

Further, it is clear that the re-entry or impact conditions for

circumlunar trajectories will be very sensitive with respect to the initial or

injection conditions. Since this is the case, once a circumlunar trajectory has

been found which impacts the earth anywhere on return, only slight perturba-

tions in the initial conditions are required to map out the contours shown in

Figure 3-2b. Also, from thediscussion above, it will be possible to satisfy only

tw___ore-entry conditions by means of these small perturbations; say, the inclin-

ation of the return trajectory plane and the re-entry angle. If a third condition

is to be satisfied, such as re-entry longitude, a major change in the launch

trajectory is required. This observation is utilized in the construction of the

circumlunar search program discussed in the next section.

3. Input Parameters

It is desirable when solving for circumlunar trajectories to

satisfy certain initial conditions and certain terminal conditions. In this man-

ner, utilizing an iteration scheme similar to that used in the Analytic Lunar

Return Program, it is possible to solve the split end-point problem.

The quantities which will be considered to be inputs into the

Analytic Circumlunar Program are the following:

a) the day of launch

b) the launch azimuth

c) the powered flight angle from launch to burnout

d} the flight path angle at injection

e} the parking orbit altitude

f} the time of flight to the moon

g} the re-entry flight path angle

h) the re-entry altitude

i} the re-entry maneuver downrange angle

j} the maneuver time to touchdown

k} the latitude of the landing site

1} the longitude of the landing site.
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4. Program Logic

The first six quantities above are required to solve for the

outward leg of the earth-phase trajectory. This portion of the program calcu-

lates the time of launch, time of coast (the outward leg is injected from a

parking orbit), conic elements, and the position, velocity and time of any

point on the outward leg. The first aiming point for this portion of the trajec-

tory is the center of a massless moon. The successive aiming points, calcu-

lated from the second iteration on, will be the entry point at the moon's sphere

of influence {with the mass of the moon considered).

The next five input parameters together with the moon-phase exit

velocity from the sphere of influence, which will be equal to the moon-phase

entry velocity, may be used to solve for the earth-phase return leg of the tra-

jectory. As indicated in the Program Logic Chart (Figure 3-3), the solution of

this phase requires an iteration procedure. The reason for this is that although

the magnitude of moon-phase exit velocity is known, its direction is not known

resulting in an unknown earth-phase energy. A first guess, such as assuming

that the energy is equal to that of the outward leg, is made and successive

iterations performed until the calculated earth-phase velocity at the exit point is

consistent with the required moon-phase velocity.

After calculating the return phase conic, the exit velocity vector

may be calculated. This velocity vector may be found with respect to the moon

by subtracting off vectorially the velocity of the moon with respect to the earth

at the time of exit. An ephemeris tape is utilized to obtain the position and

velocity of the moon at any time.

The two velocity vectors, at entrance and exit of the sphere,

completely determine the moon-phase conic; the plane being determined by the

cross-product of the two vectors, and the conic elements, a and e, being

determined by the dot product and the magnitude of the vectors. From the

conic elements, the entry and exit positions at the sphere may be found. At

this point, the calculated positions are compared with those found from the

earth-phase conics. If they lie within specified tolerances, then the search is

complete. If not, the program replaces old positions and times at the sphere by

the new values just calculated and returns to the launch phase calculation to
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REPLACE:

OLD POSITION VECTORS
BY NEW VECTORS

J REPLACE:

__|TIME OF FLIGHT TO MOON

| WITH RECALCULATED

J VALUE

Figure 3_3.

PROGRAM LOGIC

COMPUTE:
OUTWARD PHASE

LUNAR TRAJECTORY

COMPUTE:

VELOCITY, TIME
AT ENTRY OF S*

COMPUTE:

RETURN PHASE,

VELOCITY, TIME
AT EXIT FROM S

TEST:

VARIATION IN THESE
POSITION VECTORS

WITH OLD

MET

NOT MET

I
TEST:

VELOCITY VARIATION
AT EXIT FROM S

MET

COMPUTE:

MOON PHASE CONIC,
EARTH PHASE POSITION

VECTORS TO ENTRY AND
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I MET

T

EXIT I"_

NOT
DESIRED
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General Logic Block Diagram
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repeat the entire process. After several loops presumably tolerances will be

met and the search completed. This process is indicated in Figure 3-3. Thus

far, no use has yet been made of the landing site longitude. The reason for

this was indicated in the last section where it was shown that for a specified

trajectory to the moon only tw...__oterminal conditions may be satisfied. To

satisfy the additional constraint on landing site longitude, the total time of

circumlunar flight may be altered. This will give the earth a chance to have

the correct orientation with respect to the moon at re-entry to obtain the

desired landing longitude. The total time of flight is altered by changing the

input time of flight to the moon in the launch phase. Once this is done, the

entire circumlunar search process is repeated until, finally, the landing site

longitude tolerance is met.

5. Applications

The possible uses of the Analytic Circumlunar Program will be

similar to those of the Analytic Lunar Return Program s i. e.,

a. To perform general parametric studies such as relating

the distance of closest approach to the earth-phase energy,

relating the orientations of the conics in various phases,

and calculating launch and re-entry restriction curves.

b. To obtain launch conditions which may be used as a first

approximation in the exact program to search for exact

trajectories. Empirical correction schemes such as

that used in the ALR Program may be added to better

solve the end-point problem.

c. To calculate sensitivity coefficients of terminal conditions

with respect to injection or midcourse conditions. It has

yet to be shown, probably by direct comparison with
exact results, that the coefficients yielded by the Analytic

Circumlunar Program will be of sufficient accuracy to be
useful.

B. Non-Free-Return Circumlunar Trajectories

1. Introduction

The term nnon-free-returnn circumlunar trajectories applies

to those circumlunar trajectories which require the spacecraft to supply a
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velocity change in the vicinity of the moon. The following missions, for example,

would require a non-free-return trajectory:

a. The spacecraft is to pass around the moon at an inclination

to the lunar equator, i, (say, to pass over a specified

point on the lunar surface) and with a specified distance of

closest approach, h. In general a velocity impulse, AV,

will be required at, say, closest appraoch in order that the

trajectory will return to a specified earth landing site with
a specified re-entry angle. AV will be a function of i and

h (as well as date, etc. ) and those i - h combinations

corresponding to AV = 0 will be the free-return circum-

lunar trajectories discussed in the last section.

b. The spacecraft is to enter a circular orbit about the moon

such that it passes over a specified point and at a specified

altitude. After a few revolutions, the spacecraft is to be

injected into a return trajectory. *

Co This mission would be similar to (b) except that a landing
from a circular orbit and then launch into a circular orbit

is added before injection into a return trajectory.

It is clear from these sample missions that non-free circum-

lunar trajectories may involve any combination of injection into or out of a

circular orbit (or elliptic orbit), direct landing or direct launch, coming within

a specified pericynthion distances and passing over a specified lunar site. This

section will be concerned with the means by which the existing Analytic Circum-

lunar and the Analytic Lunar Return Programs may be modified to encompass

missions of this type.

2. Modification of the Analytic Circumlunar Program

Presently, the two requirements on the ACP in the vicinity of

the moon are the calculation of the moon centered hyperbola given the entry

and exit velocity vectors at the moon's sphere of influence, and the calculation

of a direct impact trajectory, if desired. For the mission first mentioned

above, it is necessary to calculate the moon centered hyperbola whose

*It is assumed in all of these missions that the spacecraft is to return to a

specified landing site on earth with specified re-entry conditions, as in the
ALR program.
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pericynthion distance is specified and which contains a fixed selenographic

vector. The equations for this case are fairly simple since the hyperbolic

plane must contain this vector and the entry velocity vector. The major axis

can be obtained from the vehicle's moon centered energy and the eccentricity

from the pericynthion distance.

If the spacecraft is to perform a direct landing on the moon, the

problem is a little more difficult. In this case, although the selenographic

landing site vector would be known, the eccentricity of the hyperbola could not

be found unless another parameter, such as the flight path angle at the sphere

of influence, were known. Since the solution of the outward leg involves search

iterations, it is a simple matter to approximate this parameter (it is always less

than 2 degrees) and let additional iterations improve upon this value.

For injecting into a circular orbit whose radial distance and

selenographic inclination are specified, a similar situation exists. As soon as

the hyperbolic asymptote is known (selenographic coordinates), the problem is

explicitly solvable. The orientation of the asymptote, however, depends upon

an unknown parameter which, as above, may be found by successive iterations.

One can, of course, think of more complex missions than those

discussed here, such as injecting into e11iptic orbits under given constraints.

For modification of the Analytic Circumlunar Program to include such cases,

individual analyses would be required.

3. Modification of the Analytic Lunar Return Program

The return phase of the non-free circumlunar trajectory is

essentially independent of the outgoing phase. Certainly this will be the case

if a lunar landing is a trajectory requirement. In this case, no changes in the

ALR Program are required since the program will presently search for a

return trajectory launched from the surface of the moon.

Next, launch from a circular lunar orbit which passes over a

given lunar site requires only a simple modification to the ALRP if the time of

injection from the orbit is not specified. The change is similar to that discussed

above for the outward phase. A launch may then be made from a given launch

site into a circular orbit followed by injection from the orbit, with the time of

launch and injection being calculated by the program.
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If the spacecraft is already in a specified orbit such as in

missions (a) and (b) above9 then the return trajectory, with the inputs required

in the ALR Program, is overspecified and some trajectory parameter must be

released. The parameter which is the least harmful and the most effective is

the time of flight of the return phase. The method that may be used in search-

ing for a "fixed injection time" trajectory is to first assume a total flight time.

Then, after a first iteration, a more accurate flight time may be calculated

which is consistent with the fixed time of injection.

This, howevers is not the only problem when launching from a

specified lunar orbit. A critical problem is where in the given orbit one should

inject to return to the earth. It is clear that the most efficient way to return is

to inject from a point on the orbit such that the injection velocity vector is along

the orbital velocity vector. This, however, places a very tight restriction on

the return trajectory. This can be understood more clearly if one remembers

that the velocity at the moon's sphere of influence is determined by the earth

landing conditions, and that this velocity must be contained by the selenocentric

hyperbolic plane. Howevers if this plane is restricted to that of the orbit planes

then the chances are that the exit velocity from the sphere is not contained in

the orbit plane. A lunar polar orbit for example will contain the return velocity

vector only twice during a lunar month.

The approach recommended here to cover launch from a specified

lunar orbit is to allow launching out of the orbit plane and then to solve for that

point on the orbit which minimizes the return injection velocity. In this case,

the only modification required of the ALR Program is to launch from a fixed

selenographic point at a fixed time. If necessary the program may also be

modified to empirically search for the minimum injection velocity.
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• ORBIT DETERMINATION STUDIES

IV. ORBIT DETERMINATION THEORY

A. Background

The basic way in which statistical regression analysis enters into

orbit determination may be formulated as follows: A set of noisy, redundant

observations of a spacecraft {radar, optical, etc.) denoted by an n-vector z is

given. From the laws of mechanics and from geometrical considerations, the

true vector value _ of the observations is expressible as a known function of a

finite set of parameters denoted by the p-vector y: _ = _ {y). In the simplest

case, y denotes six components of spacecraft position and velocity at a speci-

fied epoch t o. In general, however, the set y may include other non-orbital

parameters such as physical constants, biases in observations, tracking station

location coordinates, etc., subject to p < n. The nonlinear regression equation

is then

z = _(_) + w (4.1)

where w denotes an n-vector of noise on the true values of the observations.

Given z, the functional form of _, and the statistical properties of w, the

problem is to estimate y.

In practice, Eq. (4. 1) is linearized by expanding _ about an initial

guess go" Letting Ay = Y - go and Az = z - _(go)(the components of

Az are called "residuals"), and letting 8 denote the n x p matrix of partial

derivations of _ with respect to y,

5Y Y = go '

the linearized regression equation is

Az = eAX + w. (4. Z)

The nonlinear equation (4. I) is then solved by iteratively solving the linear

equation (4. Z). Since we shall be chiefly concerned in this chapter with the
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solution of the linear equation (4.2), and not with the problem of convergence,

we shall frequently drop the A'S in (4. Z) in the future and simply write

z = 07 + w (4.3)

There are three well-known statistical techniques for the estimation of

y in (4.3). These are described below. In the discussions to follow, the noise

w will be assumed unbiased (except when otherwise noted) with non-singular

n x n covariance matrix R. The diagonal elements of R form the (diagonal)

n x n matrix M 2 of variances; M denotes the (positive) square root of M 2.

(i) Least Squares. The least squares (LS) estimate of y in (4.3) is

gLS (e' M 2 0)-I 0' M Z= Z (4.4)

Thus it is necessary to know M, within a constant factor, to compute gLS"

This estimate has the properties that it is linear, unbiased, and itminimizes

the sum of squares of residuals weighted according to M2; i.e., F(g) =

(z ° 0g)' M z (z - 8g) is a minimurn for g = gLS" The covariance matrix

of gLS is

I GLs = (e' M z e) -t e' M z R M z 8 (8' M z e) -1 I (4. 5)

(ii) Minimum Variance. The estimate

gMV = (0' R -I O)-1 0' R.-1 z (4.6)

has the property that of all linear unbiased estimates, gMV has minimum

covariance matrix. (I.e., if g is any other linear unbiased estimate of _ with

covariance matrix G, then GMV <_ G in the sense that G - GMV is non-

negative definite.) Thus gMV is called the minimum variance (or sometimes

the Markov) estimate of y o Note that it is necessary to know

constant factor, to compute gMV" The covariance matrix of

[ GMV = (8' K-t 0)-I 1
t

R, within a

gMV is

(4.7)

12. 
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(iii) Weighted Least Squares.

also consider estimates of the form
As a generalization of gLS' we shall

gWLS=,eW eWzi (4.8)
where W is a diagonal, non-negative n x n "weighting" matrix.

which is linear and unbiased, has the property that it minimizes (z -

W(z - 8g). It is thus called a weighted least squares (WLS) estimate.

covariance matrix of gWLS is

IGw_s : (_,w _-'_,w _w w _-_19 (e' (4.9)

We shall discuss later some criteria for selecting the matrix W.

There is stilla fourth estimation technique: maximum likelihood, which

merits comment here. The maximum likelihood (ML) estimate of _/ is defined

as that value of g which, when substituted for y in the sample probability

density (or "likelihood") function, maximizes this function for the sample in

question. Thus gML is in genera] a complicated, nonlinear function of the

sample. It is a theorem of statistics that gML = gMV when the noise is

gauss]an. To the author's knowledge, ML is never used in orbit determina-

tion except when accompanied by the assumption that the noise is gauss]an, in

which case ML reduces to MV. For these reasons, the authors' feel justified

in neglecting ML, with the understanding that when the noise is gauss]an ML

and MV may be used interchangeably.

B. Correlated Observations

One of the SSAS objectives was to study the estimation techniques just

described in order to arrive at a final technique considered most suitable for

the handling of correlated observations in orbit determination. That study and

its conclusions will be described here.

Consider first the comparison of LS and MV. The role of WLS will

be considered later. Note first that the LS estimate is the same as the MV

estimate when the noise is uncorrelated (i. e. , R = M-Z), as is obvious from

(4.4) and (4.6). However, we are concerned here with the situation when the

This estimate,
!

e g)

The
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noise is correlated. In that event, there are four important theorems

regarding the relative performance of LS and MV.

Before proceeding to these theorems, it is necessary to introduce the

concept of the spectrum of the noise correlation matrix.

matrix is simply the normalized covariance matrix, p

by hypothesis non-singular, this matrix will possess n

k 1, .... Xn and n {orthonormal)eigenvectors _b1 ....

and

P _i = Ki _/i' i = 1 ..... u,

The noise correlation

= MKM. Since R is

positive eig_nvalues

such that
'n

_Ji_j = 5ij' i, j = 1..... n.

When the noise is stationary, so that Pij = Pi-j ' the spectrum of the corre-

lation matrix has an interesting interpretation: if the sampling frequency is kept

uniform and constant while the length of the sample is allowed to increase, then

the noise eigenvectors approach the ordinary trigonometric functions asympto-

tically, and the asymptotic eigenvalues are are proportional to the Fourier

transform of the correlation function, i.e., the spectral density of the noise

process. Since for most noise processes which one expects in orbit deter-

mination, the spectral density has its maximum at zero frequency, this has the

important implication that one can expect the maximum eig_nvalues to be assoc-

iated with the "low frequency" eigenvectors.

We shall next introduce the notation

G UG would be the covariance matrix of the

noise were uncorrelated {i.e., R = M'Z).

is commonly computed whenever an LS determination is performed.

= (e' M 2 e}-I Thus
GU C

ILLS (or MV) estimate of y if the

This matrix, it might be added,

The following three theorems regarding the comparison of

arederivedinReference [5] .

LS and MV

Theorem I. GMV = GLS if and only if the space spanned by the p n-vectors

which are the columns of M e coincides with the space spanned by exactly p

eigenvectors of 9, then both GLS and GMV are similar to a diagonal matrix

whose elements are the corresponding p eigenvalues of p.
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Theorem Z. If

eigenvalues of

kma x and kmi n

p, then

denote the maximum and minimum

Xmi n GUC < <__ <-- GMV GLS -- kmi n GUC (4.10)

<._ ( + 1 1 (4. 1 1)Theorem 3. GLS -- kmax kmin) ([max + "kmin ) GMV

r_

A fourth theorem, due to Grenander and Kosenblatt 133], states condi-
I,_ .J

tions on the regression vectors (actually, on the columns of IV[ 8) such that

when the noise w is stationary, GLS and GtvfV will be asymptotically equal

as the length of the sample is increased. The reader is referred to the cited

reference for the exact mathematical formulation. The implications of their

theorem are that GLS and GMV will be asymptotically equal whenever the

regression vectors are polynomials, trigonometric functions or a mixture of

these. Because these are just the kinds of regression vectors which one en-

counters in orbit determination, the theorem indicates that when long portions

of data for which the noise is stationary are analyzed by LS method, one can

expect the resulting estimates to be near optimum.

Let us now see how these theorems may be applied to practical orbit

determination work. One of the characteristics of tracking data is that it

usually occurs in several "data types," according to the quantity which is

measured (Doppler, angles, etc. ) and according to the tracking station from

which it originates. We shall suppose here that equation (4. 3) decomposes into

k regression equations,

z i = 8.1 Y + w.,1 i = 1, ... , k (4.12)

each of which is a vector regression equation in the same vector regression

parameter y corresponding to one of k mutually uncorrelated data types. Let

8i, Ri, M i, etc., be defined for each data type as in SectionA. Then for each data

type one can, in principle, construct the LS estimate gi'

, Z
For some data types, 8 i M i 8. may be poorly conditioned or even singular,
making gi ,impossible to obtain I explicitly. This is not important to the argument

a *< , Z o
s long as _1 8i Mi 8i is non-slngular. Looking at the individual gi is a con-

ceptual, rather than a real, operation.
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gi _e! M,z ei)-I e! MZ= w. 14. 13)
1 1 1 1 1

having covariance matrix Gi,

Gi = (fli M'21 ei )-1 (_:1 M_"I R M _.1 ei (el M_'I ei )-I

< _i (e_Mz -1-- i el)

(4. 14)

where )'i is the maximum eigenvalue (or an upper bound on the maximum eigen-

value) of the noise correlation matrix Pi = M. R.M. going with the i th data
1 1 1

type. (The inequality in (4.14) is an application of Theorem 2. )

Two questions arise regarding the gi : (a) how good are the individual

estimates and (b) how may they best be combined into a single estimate of _?

We shall examine these questions below.

gi

(a) To decide how good the individual estimates are, we shall compare

with the optimal MV estimate gMV°'
1

{e'i Ri I ei )-1 e'i R:I= w. (4.15)
gMV i 1 1

having covariance matrix GMV .,
1

GMV" : (e_RTll ei)-I (4.16)
1

In most orbit determination situations, one can expect the regression vectors

(i.e., the columns of M 0) to resemble low frequency and/or secular functions.

Thus, the regression vectors will ordinarily be expressible as linear combina-

tions of the lower frequency eigenvectors, primarily, with only small contribu-

tions from high frequency eigenvectors occurring. We have also seen that the

low frequency eigenvectors are generally associated with the maximum noise

eigenvalues. Thus, application of Theorems i, 3 and 4 suggest that G i and

GMV i will be nearly equal and will, in turn, be closely approximated by

_°_e_Mz. -i1 1 8i) {It should be emphasized that these are tendencies which, in

exceptional cases, will not be true. Conditions which do hold rigorously in all

cases are given by Theorems 1, Z and 3.)
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(b) Given gi and Gi, i = 1..... k, the optimal way to combine

the gi into a single estimate would be to weight each gi according to G.-I.
I

However, this procedure has the following disadvantages: Ca} it is numerically

complicated and {b) it requires a detailed knowledge of each R.. We therefore
i

propose as a compromise solution that each gi be weighted according to
tM 2

0i i 0i/)_i This procedure has the advantage in that (a) iC is numerically

simple; (b) ki (0'i MZ'I 0i}-I can be expected to be a rather good approximation

to G., as we have just seen; and (c) since G. < (0_ M 2 -li I- ki i 0i) , in=all cases,

the weighting is conservative since it does not tend to overly weight highly

correlated data.

The fact which makes the above solution numerically simple is that it

corresponds precisely to using a WLS estimate based on all of the observations,

gWLS = (0' W O) -10'Ww (4.8)

in which the diagonal weighting matrix W is given by

I
I

I

I
I
I

I

I

W

!

!
M ),lt
...... @

°1

_,MkZlkk
l

{4.17)

The formula for the covariance matrix GWL S of gWLS is given by

equation (4.9). More interesting, perhaps, is the inequality

OWL s _ We) <X iCo 1 .... C4. 18)

-i

Here, (8' W 8) constitutes an easily computed upper bound on GWL S which

satisfies the condition that it is less than or equal to the upper bound on the

covariance matrix of each gi" The reader is referred to Example I and 2 at

the end of this Chapter for application of the principles developed in this Section.

By contrast with the above estimate,

based on all of the data is,

the conventional LS estimate of

-11 30
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g_ = (0' IVlz O)-I O' M 2 w

k k

o!1 x x Oi) Oi x x

k k

: (Z o__2 -1 Mz1 1 ei) _ e_l 1 e.1 gi
1 1

(4.19)

Thus, gLS may be regarded as a linear combination of the gi in which gi is

weighted according to 0! M z.8.. The weakness in this estimation procedure
1 I 1

.th
comes from the fact that although gi may be a "good" estimate based on the i

data, 0! M 2.0. can be a very poor approximation to the inverse of the covariance
I I I

matrix of gi" In fact, if the data type is highly correlated, e! M Z.0. may be an
I I 1

order of magnitude larger than G -I {for example, when k. is of order I0 _• Or

3 i I

10 , as can easily occur. See Example Z at the end of this Chapter.) This can

lead to overly weighting a highly correlated data type in such a way as to degrade

the accuracy of gLS compared with not using that particular data type at all.

The WLS estimate previously described carefully avoids this pitfall.

Closely associated with the problem of how to handle correlated data is

the problem of how frequently to take observation when it is known that the

observations are correlated in time. This aspect has been studied by Hoel [34]

and others. We do not have any new and fundamental contributions to make at

this time except to re-iterate two well-known principles: (a) Regardless of the

particular nature of the noise, it is generally advisable and profitable to include

a sufficient number of observations so that, in the absence of noise correlations,

the structures of the various regression vectors would be well-followed. A clue

as to when this occurs is to observe when the matrix (I/n) 0_W 0, as a function

of the number of observations n, approaches a stable (asymptotic) matrix.

(b) Adding more observations beyond this point will be of value only if noise

"cancellation" occurs (e. g., when the noise is "white"). When the noise is

correlated, it is usually not profitable to further increase the frequency of

observation beyond the point where observations adjacent in time are 50 percent

correlated {positively, with no intervening minima in the noise correlation

function between the origin and the sampling interval).
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C. Special Topics

Having concluded that a weighted least squares type of estimation was

most suitable for handling correlated data, we attempted next to apply

this technique to some of the special problems which are peculiar to orbit

determination. Specifically, we studied (1) handling a priori data, {Z) separa-

ting parameters into classes according to whether or not they are to be esti-

mated, {3) tracking through midcourse maneuvers, and {4) modification of the

computational techniques for onboard use. The results of these studies are

[6_ and are summarized here.reported in Reference

When the W.LS technique is to be used, it is a great convenience to

introduce the concept of "equivalent-or-worse" uncorrelated noise. The basis

of this idea is as follows: If R denotes the true n x n covariance matrix of

the observational noise w in equation {4.3), then the W.LS weighting matrix

which we have chosen is, in effect, the "largest" n x n

fying R _ W. -1 This fact results in the inequality

diagonal matrix satis-

GWL S = (e' w e)-t e'w RW e (e' w e)-t < (e' w e)-I (4.2o)

Therefore, if we replace the true noise w with (hypothetical) uncorrelated

noise w having covariance matrix W. -1, any conclusions we may draw con-

cerning the accuracy of our statistical estimates will be "conservative." In

the following discussions, we shall treat the noise as if it were uncorrelated,

having covariance matrix equal to the reciprocal of the diagonal weighting

matrix W., with the understanding that noise which was originally correlated

has already been replaced (conceptually) with equivalent or worse uncorrelated

noise. It might be added that this idea is also useful when simulating the effects

of correlated noise in space mission analysis. In that event, the correlated

noise is replaced in fact, rather than in theory, by uncorrelated noise. {See

Example 2. )

1. A Priori Data

Let the initial guess go for N in (4. 1) have a priori "information"

matrix S. S is a pxp matrix of weights applicable to the a priori value go

which is such that when its inverse exists, it is the a priori covariance matrix

-1 32
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of go" However, there is no requirement that S be non-singular, and S may

have rows and columns of zeros corresponding to components of go for which

no a priori variances are available. Then the combined estimate of _/, based

both on a priori information and on observational data, is given by

Igl = go + (8' W 8 + S) -I 8' W Az I (4.21)

and has covariance matrix

}IG = (9' W e + S)(4.221

In case several iterations of the WLS procedure are required to solve the non-

linear equation (4. I), then equations for successive estimates become slightly

more complicated:

!
gn = gn-I + (%-_ %+I s)-1%-_ a"n-i + (%-_ en+ls)-IS (go- g_-l)l(4"Z3)

g

N

I

II

II
g

n

g
II
II

where Az and 0 denote residuals and partial deviatives evaluated forn-I n-I

Y = gn-l' the result of the previous iteration. The final covariance matrix is,

of course, given by (4. ZZ) with 0 evaluated at the final estimate of y.

2. Separation of Parameters

Sometimes the components of the vector parameter y will

naturally fall into two classes, denoted by the sub-vectors Y1 and Y2" For

example, _I may denote orbital parameters while Y2 denotes physical con#

stants, tracking station coordinates, or other non-orbital parameters which

affect _. Suppose now that we intend to estimate only Y I' either because we

are unaware of uncertainties in _Z or else because we feel there is insufficient

information contained in the observational data to warrant the simultaneous

estimation of Y1 and YZ" It is important to be able to estimate statistically

the effects of using an incorrect value for YZ"

We shall rewrite the regression equation (4. I) as

z = l_(Yl,yZ ) + w (4.24)

which linearizes to

Az = 81(Yl glO ) + 8Z(¥2- gzo ) + w (4. Z5)

-11 3
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glO and g20 being the initial guesses for YI and Y2" When we solve only for

YI' the WLS estimate for YI is

gll = glO + (O_W 01 + $11 )-IO_W Az (4.26)

Sll being the a priori information matrix of gl0"

error Y2 " gz0' it is useful to write (4. Z6) as

gll = 'YI + (O_W 01 + SI1 )-1 [- Sll(.Yl - glO )

+ e_w ez(yz - gzo) + e_.w wJ

To analyze the effect of the

(4. 27)

This formulation exhibits gll as an unbiased estimate of YI in which there are

three sources of error: (1) the a priori estimate gl0 of YI' (2) the incorrect

estimate g20 for YZ' and (3) the observational noise w. Assuming that gl0

and gz0 are uncorrelated, the covariance matrix of gll is

io_ : (_;w_+_x_-1+(_wel+_,_' e_w_ _w_c_w_+ _1(_
!

I

I

I
i
I

I

I
I

I

where A Z is the covariance matrix of uncertainty in g20" The second term on

the right in (4. Z8) thus shows statistically the effect of having used the incorrect

value for Y2" In Example 3 at the end of this section, the effects of "unsuspected"

biases are derived using equation (4.28).

*In case gl0 and

h

g20

F ' l' E_o All _ A1Z

........... = covariancematrix of L_!zoj,

are correlated with a priori covariance matrix A,

t hen, the fomula for G 1 1 becomes

-i -1 -1 -1 (elwGll = (O_.WO 1 + .A.I1 ) + (OjWO 1 + .A.I1 ) 02 AZze_W e l
L

, -I -I _, I -I -I

- e i We2A21All - AllA120 _ welff (el wel + All)
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For purposes of comparison, it is sometimes of interest to know

how well one could have estimated ¥1 is one had simultaneously estimated both

_fl and _fZ from observational data. Using the notation

C c12 
',Czz j1 I

e_ w eI ÷ Sll I,

e_ w e I + Szl

1

ei wez , slz /
/ , (4. Z9)

the inverse of

of both

C will be the covariance matrix of uncertainty in the estimation

11Eclz]C -I = .... ',..... (4.30)

i C22JZl iI

Thus C 11 shows how well _fl is determined. The following formula for

is derivedin [Z]:

l '%,,
C II

(4.31)

which may be compared with G 1 1"

The following relation among the various covariance matrices for

estimates of _fl will hold:

!
(8_W01 + SII )-l < C ll -<Gll = (8_ W01 + Sll )-I + additional terms (4. 3Z)

i

I
I

I

I
I

3. Midcourse Maneuvers

Tracking "through" a midcourse maneuver involves the statistical

combining of pre-midcourse tracking data, the maneuver itself, and post-

midcourse tracking data to re-establish the orbit of the spacecraft. There are,

of course, several ways in which this may be done. Typically, the procedure

is as follows: From pre-midcourse tracking (plus any additional a priori infor-

mation) one computes an estimate go and covariance matrix G o applicable to

spacecraft position and velocity at time to , just prior to the maneuver. At

time t o, one commands a maneuver Z_g. If the maneuver is impulsive, i.e.

,z_35
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of very short duration in time, then /Xg consists of the three components of the

velocity impulse. If the maneuver is of appreciable duration, the true maneuver

can be represented by an equivalent impulsive change in all six coordinates of

position and velocity. In either event, go % Ag becomes the new estimate

of position and velocity at t +, just after the maneuver, and has covarianceo

matrix G O + A(Ag), where A(Ag) is the covariance matrix of uncertainty in

the actual execution of the maneuver and, as indicated, is generally a function

of Z_g. Then go + Zig and G O + A may be used as a priori information in sub-

sequent free-flight tracking.

Consider now the matrix A. The following model of execution

errors is, while not the most general, typical of maneuvers occurring on many

space missions. Let the correction be impulsive so that the commanded maneu-

ver is a vector velocity increment V in the (0, _b) direction, as shown below:

z

/
X

V

The expressions for errors in the execution of V are

_v : _I+ _z Ivj

6Ve = '3 + e4 Ivl

6v, : _s + _ Ivf

m,

_The problem of tracking during the actual maneuver is not treated here.
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where IV[ is the magnitude of V and

c 1 = speed error due to engine shutdown

_Z = proportional speed error due to accelerometer

and
c 3

c4 and

c5 =

c6 =

lateral velocity errors due to autopilot

pointing errors due to angular misalignment

We assume that the ¢ . are mutually uncorrelated with zero means and
2 Z 1 2 2 Z 2

Ee l = k 1, Ec 2 = k 2, E_ 3 = Ee 5 = k 3, Ee 4 = Ec 6 = k 4. Arotation

U will relate the above velocity errors to components in the rectangular refer-

ence system x, y, z:

where

i6vx ivj
6Vy I = U 6V e

U - ]

sin ¢ cos e -sin e cos 4'cos e

= sin ¢ sin 8 cos 8 cos _ sin 81
I

[_ cos ¢ 0 -sine J

Thus, the final 3 x 3 covariance matrix of execution errors, _.(V), is

_.(v) = u

The 6 x 6 matrix A is

-kl

k 2

k.

U' + V Z

kz

U k 4

k4

U !

A [ Jo I o
I

= I
I

o :7,(v

When the 3-vector V is specified numerically, as it is during real-

time analysis of an actual mission (or in a Monte Carlo simulation of a mission$),

The Monte Carlo simulation of space missions, including midcourse maneuvers,
is described in Part II.

-lz4- 13 7



then A may be evaluated numerically. On the other hand, in the preflight

analysis of a mission, Ag (or V) is not known in advance, but only its probabi-

lity distribution is known, the distribution (or covariance matrix thereo_ being

derived from a priori knowledge of how close to nominal the trajectory is

expected to be and the guidance logic which determines the maneuver. In that

event, one averages A over the distribution of the commanded maneuver

Ag (or V) to obtain A • G o + A is then used as the a priori covariance matrix

of position and velocity in subsequent orbit determination analysis. Lass and

Solioway 3 have derived a simple integration technique for evaluating A .

Since this technique is being incorporated into the Tracking Accuracy Prediction

Program and will be described in Iater documents, it will not he disclissed:__

further here. We shall merely note that a conservative upper bound on _ (and

hence on A) is given by

- - IZ <- (k + V_ 13 (4. 34)

where k = max (kl, k3) and _ = max (k2, k4).

4. Updated Least Squares

This section describes an orbit determination technique which,

because it does not require the storage of large quantities of observational

data, is especially adapted to real time operation by an on-board computer.

The essential features of this method have been proposed by Smith and

Schmidt _61 who, because of the analogy between the estimation of orbits

and the prediction of a time series by linear filtering, refer to this scheme

as an "optimal filter" method. From our point of view, however, it is more

natural to regard it as a least squares estimation procedure in which estimates

of orbital parameters are continually updated and modified as new data arrives.

Consider the following estimation problem: an initial unbiased

estimate go of spacecraft position and velocity at time to, together with an

a priori 6 x 6 covariance matrix G O of uncertainty in go' is provided. At

each observation time tk, k = 1, 2 .... , a q-vector of unbiased observations

z k is taken. We assume for the present that all observations are uncorrelated,

and that the observations taken at time t k are characterized by known (diagonal)

138
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covariance matrix R k , k = i, Z ..... Then at each observation time t k, it

is required to combine the old estimate of the orbit with the new data to form a

new "best" estimate of position and velocity at t k, and to determine the

covariance matrix G K of gk" This concept is illustrated in Figure 4-I in

which Yo' Yl' Y2 .... denote the true position and velocity vector at t o , t I,

t 2 .....

In the solution to this problem, it is sufficient to describe the

calculations performed just after the k th set of observations is taken. Let X k

denote the result of integrating the equations of motion from tk_ 1 to tk, using

gk-I as initial conditions. Then X k serves as an initial estimate of Yk for

which the "a priori" covariance matrix, Ak, is Gk_ 1 updated to time tk:

I = ¢' (k, k-l), {4.35)A k ¢ {k, k-l) Gk_ I

I where $ (k, k-l) is a known 6 x 6 transition matrix satisfying

I
I

I
I

I

The observations

AYk = $ {k, k-l) AYk_l (4. 36)

z k satisfy the non-linear regression equation

Zk = _¢k (_k) + Wk (4.37)

where _k is a known function of the orbital parameters Yk' and w k is noise

for which E w k w k' = R k. We may now proceed exactly as in Section C-I.

The linearized form of (4. 37) is

Az k = 8k AYk + w k , (4.38)

I
I

I

where Ayk = _k - Xk' &Zk = Zk - (Xk)' and
-I

matrix of known coefficients. Setting W k = R k

Ok = (a_k/aYk) is a qxp

, the new estimate of Yk is

gk = Xk + Gk O_ W k Z zkJ,
(4. 39)
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Figure 4-1.

True

Trajectory

J
f

\
I_eference

Trajectory

g

X 1

t Z

X 1

t
1

t
0

Updated Least Squares Orbit Determination. _ , _ • • •
• . o o'Itdenote the true position-veloclty vectors at tlme t I'''"

gK is the "best" estimate at time tK, while X K is
gK-1 updated to time tK
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whe re G k is the covariance matrix of gk '

I 'G k = ( Ok W k Ok + A k
i

-1)-11 (4.40)

We have described above the basic orbit determination tech-

nique. This technique can be generalized and/or modified to fit different

situations. Some such modifications are described below.

(i)

as follows:

Matrix Identity. An equivalent formulation of (4.40) is

m i , _1

Gk = Ak --Ak O_k (Wkl + Ok Ak Ok) OkAk "1I
m

i
m

m

i

I
m

!
i

(4.41)

When q < 6, this formula has the computational advantage that the matrix

which must be inverted is of order q x q, rather than 6 x 6 as in (4.40}.

This new formula follows from (4.40) as a result of the matrix identity

derived in Reference [6].

(ii) Midcourse Maneuvers. The (real time} handling of mid-

course maneuvers can be incorporated quite easily into the updated least

squares routine. For example, if a maneuver occurs just prior to time t k ,

then the commanded correction should be added to the estimate Xk, and the

covariance matrix of execution errors should be added to Ak, to form a

new a priori estimate and covariance matrix at t k .

D. Example s

Example 1. Estimating Orbital Parameters

This example, extracted from Reference [5] , describes a simula-

tion of the determination of the six orbital elements of an actual space trajectory.

The purpose of this simulation was to develop techniques for analyzing space

missions, rather than to demonstrate any conclusive results concerning a

particular mission. Consequently, only short portions of a trajectory were

tracked, and the noise models used are not necessarily characteristic of any

!
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particular real system. What is demonstrated is how the following problems

connected with space mission analysis may be systematically studied:

a} What is the effect of correlated noise on orbit determination?

b} How does LS compare with MV when applied to orbit deter-
mination ?

c} How sharp is the upper bound on LS and MV covariance
matrices given in Theorem 2 of Section B?

d} What is the result of varying the density and/or extent of
observations when the tracking noise is correlated?

The details of the simulation are described below.

1. Trajectory

A 66-hour earth-moon trajectory injected from a parking orbit

(similar to a RANGER or SURVEYOR trajectory} is used. Table 4-1 lists

injection conditions for this trajectory. The trajectory is tracked from the

Johannesburg DSIF station using R, A, E data, with tracking commencing

30 minutes after injection. Two data samples A and B are simulated:

Sample A consists of 21 sets of observations taken 20 seconds apart and

covering 400 seconds; Sample B consists of 21 sets of observations taken

80 seconds apart and lasting 1600 seconds. Since three data types are

employed {R , A, E}, each sample contains a total of 63 points. The STL

General Tracking Program was used to compute for each sample the 63 x 6

matrix @ of regression coefficients:

2. Noise

The 63 x 63 diagonal matrix M 2 is composed of reciprocal

variances of observations, with _R = 0.5 fps, _A = _E = 0.04 degrees.

R, A, E data are assumed to be mutually uncorrelated, with each data type

being auto-correlated in time according to the same 21 x 21 correlation

matrix. Two correlation models I and II are described in Table 4-2a. The
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actual correlation matrices take different forms for the different samples

because of the different data rates. Thus, there are atotal of four cases,

IA, IIA, IB, lIB, corresponding to the two samples and two noise models.

For each correlation matrix in Table 4-2a, the maximum eigenvalue is

listed in Table 4-Zb. The use of these eigenvalues is described below.

Table 4-1. Initial {Injection} Conditions for Earth-Moon Trajectory

Employed in Orbit Determination Study

Right Ascension

Declination {deg}

Flight Path Angle {deg}

Azimuth (deg)

Radius (ft)

Velocity {fps}

0.20895299 E3

-0.86249977 El

0.88045999 E2

0.12201200 E3

0.21553734 E8

0.34889200 E5

models,

3. Results

For each of the two data samples and two noise correlation

the following matrices were computed:

GU C

GLS =

GMV =

(@' M 2 0) -1 ,

{8' M z 8} -1 8' M z R M z 8 {8' M z 8} -1

{8' R -1 8} -1

By Theorem 2 of Section B,

kmin GUC _-- GMV _-- GLS --_ )'max GUC

where )'min and kma x are minimum and maximum eigenvalues of the noise

correlation matrix. (For the noise models used here, )`rain and )`max are
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-130-



I

I
I

I
I

I

I
I
I

I
I

I
I

I
I

I
I
I

I

Table 4-2a.

Model I p(t)

Sample A Pij

Sample B Pij

Model II p(t)

Sample A Pij

S ampul e B Pij

Table 4-2b.

Co rrelation
Matrix

LA

IB

IIA

IIB

Two Noise Correlation Models

e-ltt,8O ,tio8oo,
-I_-_1_e i, j = 1, .... 21

-I i -J] i, j I, 21
e -- . o e

1 (t in sec)

I + (t18o)_

2

1 + (i -j)

4

_,j=l, ..., zl

I + {i- j)Z
i, j=l, .... 21

Maximum and Minimum Eigenvalues of
the Four Correlation Matrices

k Max k Min

6.74 O. 136

8.74 0. II x I0 -3

2.13 O.464

2.85 O. 275
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identical with the minimum and maximum eigenvalues of the sub-matrices in

Table 4-2.) This implies that for any particular orbital element, the corre-

sponding standard deviations satisfy the inequality

_ kmin VUC -_ °'MV _ _LS -< _ kmax VUC

In Tables 4-3 and 4-4, the standard deviations of orbital elements corre-

sponding to UC, LS and MV estimations are listed, together with_ kmax G'UC

to enable LS and MV to be compared and to provide a check on how sharp the

above upper bound is.

Although our examples are too limited to permit one to draw

general conclusions, the following tendencies are apparent:

a) MV does not show a marked improvement over LS. In

this connection, the relative performance of MV over LS is better for Model II

noise than for Model I.

b) _ kmax _UC is a useful upper bound on _LS and _MV' since

it is not overly pessimistic. This is particularly true for the longer (in time)

Sample B.

The fact that the points are more densely packed in

Sample A does not contribute significantly to the accuracy of estimates

based on that sample, since adjacent observations are highly correlated.

Thus, one could have expected approximately the same accuracy of esti-

mation from Sample A if only every fourth point were used.

Example 2. Wei_htin_ Correlated Data

Experience indicates that the angular measurements of azimuth, A,

and elevation, E, made by the Coldstone DSIF station contain errors conforming

roughly to the following model:

E(6A) = E(6E) : 0, E(6A x 6E) = 0 ,

E(6A({) x 6A(t' + t)) = E(SE(_) x 6E(t'+ t)) = R(t)

#

This noise is in addition to a residual (uncorrected) bias of 0.005 ° .

the effects of this bias here. E(...) denotT4l_) expected value.

-13Z-
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Table 4- 3. Comparison of I_S, MV and Uncorrelated Case Standard Deviations
of Uncertainty in Orbital Elements at Epoch (Injection) for Lunar
Trajectory, Data Sample A

Right Ascension (deg)

Declination (deg)

Flight Path Angle (deg)

Azimuth (deg)

Radius (ft)

Velocity (fps)

vLS _MV _UC _kmax VUC

0.35 0.31 0.18 0.46

0.30 0. Z7 0.15 0.40

0. Z7 0. Z4 0.14 0.36

0.075 0. 069 0. 038 0. 097

8.5 x 10 4 7.5 x 10 4 4.5 x 10 4 11 x 10 4

81 7Z 4Z 110

NOISE MODEL I

Right Ascension _(deg)

Declination (deg)

Flight Path Angle (deg)

Azimuth (deg)

Radius (ft)

Velocity (fps)

0.37 0.30 0.18 0.5Z

0.33 0. Z6 0.15 0.45

0.Z9 0. ZZ 0.14 0.41

0.08Z 0. 066 0. 038 0.11

9.1 x 10 4 7.0 x 10 4 4.5 x 10 4 13 x 104

86 66 4Z 130

NOISE MODEL II

Table 4-4. Comparison of LS, MV and Uncorrelated Case Standard Deviations

of Uncertainty in Orbital Elements at Epoch (Injection_ for Lunar
Trajectory,

Right Ascension (deg)

Declination (deg)

Flight Path Angle (deg)

Azimuth (deg)

Radius (ft)

Velocity (fps)

Right Ascension (deg)

Declination (deg)

Flight Path Angle (deg)

Azimuth (deg)

Radius (ft)

Velocity (fps)

Data Sample B

_LS _MV _UC _ kmax _UC

0.13 O. IZ 0.091 0.13

O. 11 O. 11 0.083 O. lZ

0.091 O. 089 O. 067 O. 098

0.037 O. 036 O. 027 O. 039

3.3 x 10 4 3.3 x 10 4 Z. 5 x 10 4 3.6 x 10 4

30 30 g3 33

NOISE MODEL I

0.14 0.13 0. 091 0.15

0.13 0.12 0. 083 0.14

0.098 0. 095 0. 067 0.11

0.040 0. 040 0. 027 0. 045

3.6 x 104 3.5 x 104 Z.5 x 104 4.1 x 104

33 3Z Z3 37

NOISE MODE_ _q

-133-



I
I

I
I

I

I

I
I
I
I

I
I

I
I

I
I

I
I
I

whe re

R(t) = 10 -4 I1 -

= 10 -4 II -

Itll + 10-4 I Itl (deg 7) 0 < It I <10 sec-I'0- 1 - 18 _,0oo ' -- --

Iti ] (deg Z) 10 sec _ Itl < 18,ooo sec
1'8, o0o ' -- --J

= o, 18, ooo see _ltl.

The autocovariance function R(t) is illustrated in Figure 4-Z. The KIVIS value

of the noise is 0- = _0) = 0.014 ° .

- 10 -4 deg 2

0
t{sec}

0

egZ

18,000
)- t(sec)

Figure 4-2. Autocovariauce Function R = R + R Z for Noise
on Goldstone Angular Tracking Dalta.

We wish to determine the weight to be applied to this angular data to

include the effects of correlations, according to Section B. The weight is most

easily expressed in terms of an "equivalent or worse 0-,""_, which is the product

of the true 0- = 0. 014 ° and the square root of the maximum eigenvalue of the

noise covariance matrix: 0- = 0" ),mR x.
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The value of "_ will depend on the sampling interval At. First, let

At = l sec Equation (37) of [5] gives an upper bound on: _'max:

Xmax < 7 :-- 2 R(t) dt - 9,000
-C20 0-

thus _ = (0.014 ° ) (9,000) I/Z N= 1.35 °. Table 4-5 summarizes _ as a

function of At, with )'max being determined by the above formula. For a

data rate of one-per-minute (At = 60 sec), _ = 0. 174 °. An even more con-

servative value of "_ = 0.2 ° was used for the "new DSIF model" in Part II.

At

(sec)

At <1

1

10

6O

6OO

18,000

At > 18,000

o-

(deg)

I. 35 (At)

1.35

O. 43

O. 174

O. 055

0.014

0.014

-I/z

Example 3. Effects of Unsuspected Biases

This example involves the simulated tracking of a 90-hour moon-earth

trajectory, using the three DSIF Stations (Goldstone, Johannesburg and

Woomera). R, A and E data are taken at a rate of one set of observations per

minute from 12 to 80 hours after injection. Since a controlled re-entry into the

earth's atmosphere was one of the objectives of the mission, the ability to pre-

dict and control the re-entry flight path angle _, which was nominally

96 degrees, was ameasure of the "success" of the mission and is so used here.

The following results for different simulations were obtained:

a) The data was assumed uncorrelated with _R = 0.5 fps and

_A = _E = 0.04 ° . Using conventional LS orbit determination, it was found

that the uncertainty in the predicted flight path angle was _ = 0. 018 ° .

b) The effect of unsuspected angular biases was studied by applying

Equation (4. 281 using 0.01 degree as the 1 - _ uncertainty in the angular bias
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148



I

I

I

I
I

I

I
i

I
I
I

I
I

I
I

i
I

I
I

at each tracking station. When the data was weighed as before, _t_ -- 0.5 fps,

_A - _E -- 0.04 °, the resulting total uncertainty in _, due to both random

and bias errors, was _ -- 0. 031 ° Thus, by weighing the angular observations

according to their KMS values, the effect of biases in angular measurements is

nearly to double the uncertainty in the predicted value of _.

c) Angular data was discarded and the LS fit was made on R data,

only, with _R = 0.5 fps. The resultant uncertainty in _ was cr_ -- 0.0Z5 °.

Here, then, we have an example in which the inclusion of "bad" (i. e. ,

improperly weighted) angular data led to a poorer orbit determination than if

that data had been omitted entirely. It is an interesting problem to determine

the proper, or optimum, weighting of the angular data (including angular biases)

which would minimize the resultant value of _. Experimenting with different

weights indicated that the proper weighting was slightly less than 0.2 degree,

leading to _ - 0.02Z degree.
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V. TRACKING ACCURACY PREDICTION PROGRAM

A. Introduction

In the design of space flight trajectories and hardware it is necessary

to determine the answers to questions of the following nature:

In a nominal operation, how accurately will the spacecraft trajectory

or certain terminal variables be determined from tracking, as a

function of time throughout the flight?

What is the sensitivity of this nominal accuracy to the number and

location of tracking stations, the quantities measured, observation
noise models, data biases, etc. ?

What is the effect of uncertainties in physical constants and station

locations on the nominal accuracy?

What is the effect of a midcourse correction on the orbit determination

accuracy?

The Tracking Accuracy Prediction Program (TAPP} has been designed

specifically for the statistical analysis of such preflight orbit determination

problems, as distinct from the operational processing of data to determine a

particular orbit once a flight has occurred. In developing the program, empha-

sis has been placed on computational speed, capability of handling a wide range

of problems, and ease of future program modification. To these ends, the

following features have been included: For speed, trajectory computation is

based on a three-dimensional, multi-center, patched conic model so that no

integration is required. In addition, the ephemerides of celestial bodies are

computed from formulas rather than by table look-up, and frequent tracking

observations are interpolated from a basic mesh of time steps,

The orbit computational scheme is completely general in that it can

deal with all types of conics with essentially no alterations in the formulas. No

difficulties are encountered in such troublesome_ cases as parabolic, near para-

bolic, circular, and zero inclinatiou orbits. This flexibility is made possible

by the use of the Cartesian coordinates at a fixed epoch as the orbital elements

Extensive comparison at STL of the results of such models and the results of

"exact 'g integrating programs has shown good agreement for both lunar and
interplanetary flight s.

150
- 137-



I

I
I

I
I

I

I
I

I
I
I

I
I

l
I
I

I
I

I

with Herrick_s unified parameters {Reference[371} for finding the spacecraftalong

position velocity vector on the orbit.

A variety of observation types may be simulated_ including range,

range rate, hour angle, declination, elevation, and azimuth from earth-based

stations; planetary diaxneters and star-planet sightings from the spacecraft; and

range and range rate from a lunar-based station. Rise and set times are corn-

puted, allowing the user to specify the observations to be taken by convenient

"rules" and placing the burden of generating the observation times on the program.

A number of noise models and station locations are prestored in the program and

may be specified by a code number. Other models and station locations may, of

course, be entered as input quantities. The effects of uncertainties in station

locations, physical constants, and biases may be studied. Up to 2.5 orbital ele-

ments and non-orbital parameters may be solved for, and the effect of executing

a midcourse maneuver may be simulated. A choice of five printout formats is

provided covering trajectory variables, midcourse quantities, and tracking

matrices, and varying in the amount and type of detail printed out.

TAPP Mod I was designed for the tracking analysis of flights containing

a single midcourse correction. An extended version {TAPP Mod If) is under

development which will allow simulation of n midcourse and terminal guidance

corrections. This latter program employs a Monte Carlo method of analysis

and is intended for combined tracking-guidance "mission analysis," including

studies of midcourse fuel requirements, relative efficiencies of guidance logics,

and the study of adaptive correction systems.

B. General Program Description

In the computation of orbits, it is assumed that an orbit is determined

as a function of time from the equations of motion if the combined initial position

and velocity vector, x o, is given at one instant, t o . In practice x ° is never

known exactly but can be estimated from observations made along the orbit.

Such observations are subject to random noise which introduces fluctuations

into the calculated values of x .
o

The object of the present program is the evaluation of orbit determin-

ation accuracy on the basis of a given noise model and the details of observations



along the orbit. For our purpose_ the accuracy criterion is the covariance

matrix of a set of variables which are known functions of x . Usually these
o

variables are taken to be the impact parameter vector with respect to a target

planet or in the case of elliptic motion, the spacecraft position vector at a

fixed time.

In order to find the covariance matrix referred to above, the method

of least squares is used to estimate the initial position and velocity vector, Xo,

from the observations. The covariance matrix for x is obtained from the
o

weighted least squares matrices. The covariance matrix for functions of x
o

can then be obtained by a linear transformation. (That is, except for effects of

physical constants which will be discussed later. ) *

Briefly, the tasks required for finding the covariance matrix of impact

errors are outlined in block diagram form in Figure 5-1.

In addition,to the primary purpose of tracking accuracy evaluation,

program may sometimes be used to compute from Xo,

I) The approximate spacecraft trajectory and a set of auxiliary
quantities such as the elements of the earth-escape hyperbola,

z)

the

various geometrical quantities associated with the sun-phase

transfer orbit, and the vector impact parameter at the target planet.

The spacecraft rise and set times from a number of stations over
a time span of interest

3) Target sensitivity coefficients for midcourse maneuvers at pres-
cribed points in the orbit

4) The program may also be used to simulate midcourse maneuver

errors from a given set of systems performance parameters and
prescribed tracking data.

The functions of the major program blocks are described in the following

paragraphs.

1. Orbit and Ephemeris Computation

The trajectory of a spacecraft is usually found by solving the equa-

tions of motion including all pertinent force terms. To enhance the spe@d of

orbit computation, deviations from Kepler motion are neglected so that all trajec-

tories are combinations of conics. For cases in which there is a sequence of
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Figure 5-1. General Block Diagram
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primary attracting centers, a succession of conics are matched together at the

boundaries of the sphere of action for the various bodies. Such a procedure

removes the necessity for any integration of th e equations of motion. The

computation scheme for orbits and variations is shown in Figure 5-Z.

In additions the ephemerides for the pertinent celestial bodies are

computed from Kepler formulas using mean orbital elements which include

secular variation terms but not periodic ones. A provision is made to accept

osculating elements at a fixed epoch if higher accuracy is required. However,

in most instances, the tracking accuracy should not be critically affected by

small deviations in the positions of the celestial bodies from their actual position.

Z. Search Routine

One required program input is a set of initial orbit conditions

yielding approximately the desired final conditions at the target body. These

input conditions will normally be obtained from one of the standard lunar or

interplanetary trajectory design programs available. To allow for differences in

c¢=nputational models used by TAPP and other programs, a search routine is pro_;

vided in TAPP to achieve a required set of final conditions. This is accomplished

by a differential correction process on the initial conditions. Given an initial

vector, Xo, which yields a reasonably close value of the re_ _uir d final vector

b; the routine computes the differential coefficient matrix, la_-I , and finds

\-o/the correction vector

x o

The new value x 1 = x ° + 5 x °

-1 [b (required) - b (computed)]

are used to compute the new values b 1. The

process is repeated until the required conditions are achieved. The search may

be carried out by varying the injection conditions at the earth or the velocity at

infinity on the escape hyperbola.

3. Kise and Set Times

To insure that the simulated observation times correspond realisti-

cally with the given orbit and tracking stations, visibility times from each station

are computed over the period of interest.
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This is accomplished in the program by computing the elevation

angle, E, from the tracker at prescribed intervals over the span of tracking.

In particular, we compute

R .p
s - sin

6 = sin E - sin ¥o = V-IlRs] I,'Pi o

where

R is the position vector of the station
S

p is the vector from station to spacecraft

Yo is the minimum elevation before visibility is said to occur
(usually different from zero)

The spacecraft is visible from a given station if 5 _ 0. The rise-set intervals

are found by interpolating for the times at which 5 changes sign.

In case of lunar and deep space vehicles, the spacecraft has a

slow angular rate with respect to the earth after the initial day or two. Since

the station coordinates have a period of one sidereal day, the rise-set times on

the n th day are reasonable first approximations to the rise-set times on the

n + 1st day. This fact is used to speed the determination of rise and set times

over a long trajectory time span.

In anticipation of lunar satellites, the rise-set routine also finds

the occultation times of the spacecraft by the moon. Only visible, non-occulted

times are used in simulated observations.

4. Radar Derivatives

The radar derivatives are the regression coefficients appearing in

the least squares estimation of x o. In the present program they are obtained
.th

by use of the differentiation chain rule. Let K i be the 1 radar observation;

t the time of the observation; x(t) the position and velocity, at time t; and x
"[_ \_ 1"_.. 0

the value of x at the epoch, to;* then in matrix notation, I_.__11 is

\0x/

For illustrative purposes, we are considering x to be the initial condition
• • O o

vector. However, x may, m general, include physical constants elements
as well. o
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where

\_) is the (1 x 6) matrix of derivatives of Ri with respect to

x(t). It is obtained directly from the definitions of Ri(x )
by differentiation.

is the (6 x 6) variational matrix for the change
to an initial increment 5 x .

o

5 x(t) due

Since conic formulas are used to approximate the trajectory,

by differentiation of the Kepleroformulas.

is obtained

5. Normal Matrix

Let R be the vector consisting of all the individual observations,
/__\

K i. The elements of the matrix A = (_x_) are formed in accordance with a

prescribed set of rules which dictate the type and frequency of the simulated

tracking data. The normal matrix is then simply

A'WA = OK W OR

where a prime denotes transpose; and W is the diagonal matrix of final

weights assigned to the observations. W is computed in accordance with a set

of rules which relate it to the noise moment matrix M. The matrix M will,

in turn, be typically computed from Table 5-1.

6. Tracking Accuracy Output

The covariance matrix of the impact vector (or some appropriate

substitute) is the criterion of tracking accuracy. To elaborate on its computa-

tion, we define the notations:

A
K - m vector of actual observations including noise

Xot - n vector of true orbital parameters to be estimated

x - initial estimate of x
o ot
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Table 5-1. Typical Noise Model for Terrestrial Tracker

Data Type

angular

measurements

(each type)

doppler shift

range

Noise Source

readout error

antenna deflections

jitter

oscillator drift

round off

clock error

systems error

round off

O"

(typic al value s)

0. 003

0. 007

0.01

C

K C R

5 meters

10 meters

lit

(typical values)

<10 seconds

"_5 hours

<10 seconds

T

<I0 seconds

1 hour

5 hours

_--i0 seconds

I

I

I

I

I

I

I

R

T

(f/f)

C

K C

is the slant range

is the counting interval

is the percentage drift rate

is the velocity of light

c on s tant
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P q vector of parameters (usually physical constants) which
affect the values of the computed observations but which
are not being estimated

R = R(x , p) - m vector of computed values of the observables

_'ased on the initial values, x ° and p

1_ - covariance matrix of the initial estimate, x
O O

Ap - covariance matrix of the vector p {assumed given}

A - m x n matrix of partial derivatives, _(3-_)
\ v/

P - m x q matrix of partial derivatives, _(-_-1
\ - /

W - m x m diagonal matrix of final least squares weights

ie eo ,

In most of the following, we absorb into A and P matrices,

In performing the least squares fit, we hold the vector p fixed but include the

effects of its uncertainty in computing the covariance matrix of impact errors.

In general, the p vector will include quantities such as mass of the earth,

moon, station loaction, velocity of light, etc. The errors in Xo, p, and the

noise on the observations are assumed to be independent of each other for the

present.

If the assumed values of p coincides with the true values, Pt' then

the least squares estimate of xot is the value Xls which minimizes the

weighted sum

S = [K - R(Xo, pt } - A(Xls -Xo) ] ' W [R - R(Xo, pt } - A(Xls - Xo) ]

If, in addition, Xo is an a priori estimate of Xot with covariance matrix

F o, then the combined least squares and a priori estimate, _o' is obtained
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from the equation

"xo = x ° + KA' L--JR - R(Xo' Pt )]j (5. I)

K ._ (A'A + Fol) -I

A small increment

where
6p = p - Pt will yield a slightly different estimate, x o,

^ R(x° 1^x° = x ° + K A' R - p) - P 5p (5. Z)

If 5_ : x̂ - x and
o o ot 6x : x - x we obtain from (5 Z)0 O ot'

6_:o = 6Xo + K A' [ R - R(Xot, pt ) - A 5Xo - P 6Pl (5.3)

= K[A' 6R A'P 6p + Fol 6Xo]

_ Fo :0
where

(no a priori knowledge), the estimate of Xot reduces to Xls

Xls : Xo + (A'A) -I A' [R - R(x o, pt)] (5.1a)

which is the usual formula based on a least squares criterion. Equation (5. 1)
combines the a priori estimate with the least squares estimate, all into one

operation. As shown in Keference [17], it is equivalent to finding the least
squares fit as in (5. la), and then combining with the a priori estimate in
accordance with the formula

_o : Als + Fo is Xls + o
i

where Als is the covariance matrix of Xls. The methods are equivalent and
the covariance matrix of T o is given by the first term of (5.4) if one assumes
that there are no errors in p.
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The covariance matrix of the estimate is

J = A' NA + Fo -I (5.5)

where the bar denotes an enxemble average and A is the a priori covariance
P

matrix of p; N is the product of the diagonal matrix of the variances on the

noise and the weighting matrix W. The matrix, A, always has included in it

the factor _- ; otherwise an additional factor of W would appear in {5.5).

Figure 5-3 is a flow diagram of the orbit determination simulation.

The differential errors in the impact vector,

linearly to 5_ and 5p. We have
O

b = b{Xo, p) are related

5b = k 5_ ° + _6p

where

k

v = -KA' P

The covariance matrix of b is

A b = 6b 6b I =

= k KJKk' +

(x 6x_° + _6p) (x 67¢° + _6p),

(g. + kv) Ap (I• + k v)'

(5.6)

_, and _t are the usual explicit partial derivatives of b

p respectively. 5b = kvSp is an additional error term in

x̂ ° arising from an incremental change 6p.

Equation {5. 6} is the formula for finding A b when

independent. Since A b

with respect to x ° and

b due to an error in

6x ° and 6p are

is the criterion which measures the tracking accuracy,
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much of the remainder of this write-up deals with the details and options

pertaining to its computation from hypothetical observations.

As shown in Figure 5-4, the impact par_rnmeter b is a vector consisting

of the two components of the miss vector, rn = rn and the total flight time,

tf.

b = rn 2

tf

rn 1

A b

A
m

and rn 2 define a plane which will be called the impact parameter plane.

= B_-gB -r is a 3 x 3 matrix whose upper left hand 2 x 2 is given by

-- 5rn 5rn t . We rewrite this as

[2 ]o-1 Po-10-2

Am = 2 (5.7)

Po-lo-2 o-2

The form 5rn 0quadratic Am 1 5rn =

constant probability in the (rn 1, rn2) plane. Am

of an orthogonal transformation to new variables

constant describes a dispersion ellipse of

may be diagonalized by means

M where

so that

M = Um

i10)AM = UAm U'= {5.8)

X

U is a rotation from the

The angle of rotation is

rn
1

e where (assume o-I _-- °'2) m 2

0 = 1 2Po-lo-2 _0
_r tan-1 2 2 _ rn 1 (5.9)

0-1 - o-z /2_

axis to the major axis of the dispersion ellipse.

The quantities Ab, AM , and 0 are computed at various stages of the simula-

tion as an indication of the tracking accuracy.
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7. Midcour se Maneuvers

Another use of the program is to simulate the errors of a

midcourse velocity correction. This is done by supplementing A b with an

error covariance matrix due to the imperfect execution of the maneuver. Since

the maneuver system errors and the tracking noise are assumed to be indepen-

dent, the covariance matrices from the two sources add directly. The program

may be instructed to perform either a hypothetical or an actual maneuver.

The difference between them is that in the first case the correction

velucity errors are not propagated into the future. Their effects on A b are

computed at the time of the hypothetical maneuver and are dropped for further

calculations. The object is to display the effects on A b of the maneuver errors

at various points along the orbit as the amount of tracking and the error coeffi-

cients vary in time.

In contrast, the simulation of an actual midcourse implies that the

maneuver errors are permanently implanted in the orbit as they always are in

real life. All computations of A b after the maneuver will have included in

them the errors arising from the performance of the maneuver. In both cases

we assume that the mean of the midcourse velocity magnitude is zero so that

the orbit remains unaltered from the nominal even though the errors are added

on. This a a valid procedure if everything is linear, i.e., the error coefficients

do not change rapidly in the vicinity of the nominal. The program may be

required to perform a series of hypothetical maneuvers but only one actual one

at this time.

a.

for along an orbit. To illustrate the effect of the i th

Abi = covariance matrix of b

Aai = covariance matrix of b

Hypothetical Maneuver s (abbreviated hm)

Usually, a sequence of the hypothetical maneuvers are called

point, use the symbols:

just prior to the i th hrn

just after the i th hrn

_TAPP Mod II, under development, will have a multiple midcourse maneuver

capability.
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X.

1

ho

I

I Xo

| _o

= covariance matrix of velocity errors due to imperfect

execution of the required maneuver. A e is a 3 x B matrix_/0
be used as a partitioned 6 x 6 matrix Ae = {_ 0but may J\0 A

= (r i, vl) - the spacecraft position and velocity vector with
respect to the force center at t i, the time of the i th hrn

= covariance matrix of x. due to tracking
1

= position and velocity at the initial epoch,
during which the maneuver occurs

t o , of the phase

covariance matrix of x due to tracking only
O

I is to updat_ the epoc,hA straightforward way of computing Abi A f _b_ a(_2_ 1

the i th hm; compute A i due to tracking; Abi is just bi = _x_-_i} Ai

I . in However, frequent
Aal is found by replacing A i by A i + A e Abi.

updating involves some tedious matrix manipulations if physical constants are

involved. A somewhat simpler scheme is used for hm's in the present pro-

gram by keeping the epoch at t o . At t. compute1

I

n :0xo 
after which

I (neglecting physical constant errors in this case)

r0Xo_ /0x_
I xi =For computationalpurposeS,(ri,vi)i.e. \ v_i} is obtained from \ X_o]

8x
O

1

_x
O

YVT.
1

to
1

I f0_o\ fox_,_-
I \<J =\<J

in which

I

I
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b. Actual Maneuvers

the maneuver.

Ao, then

After an actual maneuver, the epoch is moved to the time of

Calling the new point (t o, Xo) with a priori covariance matrix

A a = aI_Xo_ (Ao + A e) aI_

If more tracking data is added after t
O'

the new data can be incorporated into the covariance matrix of

formula

A = KJK
O

where

I{ 1 ' ]-1K = A ° + Ae)- + A 1 A 1

then the effects of

x ° by the

!

:J = A 1 N 1 A 1 + (A o + A e)
-I

-1

A 1 and N 1 are quantities referring to the new data having meanings which

correspond to A and N in (5.5). The covariance matrix for b is then

simply

Aa ala--X--o_ _ at_X_o_
= A o

The program also covers the more complicated case where

physical constant uncertainties are considered.
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